Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Phosphatidylinositol 3-kinase/Akt signaling mediates interleukin-6 protection against p53-induced apoptosis in M1 myeloid leukemic cells

Abstract

M1 myeloid leukemic cells were used to dissect the molecular mechanisms of myeloid cell survival and apoptosis. A salient feature of M1 cells is that they respond to the physiological survival factor interleukin-6 (IL-6), yet lack the tumor suppressor gene p53. Functional wild-type activation of temperature-sensitive p53 protein (p53 val) at permissive temperature in M1-t-p53 cells results in rapid apoptosis, which is blocked by IL-6. How p53 induces M1 apoptosis and how IL-6 protects against p53-induced apoptosis are not fully understood. Here it is shown that p53-mediated apoptosis of M1 cells involves rapid activation of the proapoptotic Fas/CD95 death pathway, which activates caspases 8 and 10. Functional p53 also targets the mitochondria, causing upregulation of proapoptotic Bax, downregulation of prosurvival Bcl-2 and activation of caspase 9. IL-6 was found to protect against p53-induced apoptosis via activation of the PI3K/Akt survival pathway, which in turn counters both the Fas/CD95 and mitochondrial apoptotic pathways and activates the prosurvival transcription factor nuclear factor-kappaB (NF-κB). Taken together, this work supports a novel model for leukemic progression where cells that acquire the ability to produce an autocrine survival factor, such as IL-6, can bypass normal p53 surveillance function by targeting Akt, which in turn can exert effects on the regulators of apoptosis, such as the Fas/CD95 pathway, the mitochondria and NF-κB.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 8
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Amanullah A, Liebermann DA, Hoffman B . (2000). p53-independent apoptosis associated with c-Myc-mediated block in myeloid cell differentiation. Oncogene 19: 2967–2977.

    Article  CAS  Google Scholar 

  • Amanullah A, Liebermann DA, Hoffman B . (2002). Deregulated c-Myc prematurely recruits both type I and II CD95/Fas apoptotic pathways associated with terminal myeloid differentiation. Oncogene 21: 1600–1610.

    Article  CAS  Google Scholar 

  • Bennett M, Macdonald K, Chan SW, Luzio JP, Simari R, Weissberg P . (1998). Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 282: 290–293.

    Article  CAS  Google Scholar 

  • Birkenkamp KU, Geugien M, Schepers H, Westra J, Lemmink HH, Vellenga E . (2004). Constitutive NF-kappaB DNA-binding activity in AML is frequently mediated by a Ras/PI3-K/PKB-dependent pathway. Leukemia 18: 103–112.

    Article  CAS  Google Scholar 

  • Chen G, Bhojani MS, Heaford AC, Chang DC, Laxman B, Thomas DG et al. (2005). Phosphorylated FADD induces NF-kappaB, perturbs cell cycle, and is associated with poor outcome in lung adenocarcinomas. Proc Natl Acad Sci USA 102: 12507–12512.

    Article  CAS  Google Scholar 

  • Garcia-Calvo M, Peterson EP, Leiting B, Ruel R, Nicholson DW, Thornberry NA . (1998). Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem 273: 32608–32613.

    Article  CAS  Google Scholar 

  • Ghosh S, Karin M . (2002). Missing pieces in the NF-kappaB puzzle. Cell 109(Suppl): S81–S96.

    Article  CAS  Google Scholar 

  • Gottlieb RA . (2000). Role of mitochondria in apoptosis. Crit Rev Eukaryot Gene Expr 10: 231–239.

    Article  CAS  Google Scholar 

  • Hawley RG, Fong AZ, Burns BF, Hawley TS . (1992). Transplantable myeloproliferative disease induced in mice by an interleukin 6 retrovirus. J Exp Med 176: 1149–1163.

    Article  CAS  Google Scholar 

  • Hayden MS, Ghosh S . (2004). Signaling to NF-kappaB. Genes Dev 18: 2195–2224.

    Article  CAS  Google Scholar 

  • Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F . (2003). Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374: 1–20.

    Article  CAS  Google Scholar 

  • Hirano T, Ishihara K, Hibi M . (2000). Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 19: 2548–2556.

    Article  CAS  Google Scholar 

  • Hu L, Zaloudek C, Mills GB, Gray J, Jaffe RB . (2000). In vivo and in vitro ovarian carcinoma growth inhibition by a phosphatidylinositol 3-kinase inhibitor (LY294002). Clin Cancer Res 6: 880–886.

    CAS  PubMed  Google Scholar 

  • Karin M, Cao Y, Greten FR, Li ZW . (2002). NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2: 301–310.

    Article  CAS  Google Scholar 

  • Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH et al. (1995). Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14: 5579–5588.

    Article  CAS  Google Scholar 

  • Krueger A, Schmitz I, Baumann S, Krammer PH, Kirchhoff S . (2001). Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J Biol Chem 276: 20633–20640.

    Article  CAS  Google Scholar 

  • Levine AJ . (1997). p53, the cellular gatekeeper for growth and division. Cell 88: 323–331.

    Article  CAS  Google Scholar 

  • Liebermann DA, Hoffman B . (1994). Differentiation primary response genes and proto-oncogenes as positive and negative regulators of terminal hematopoietic cell differentiation. Stem Cells 12: 352–369.

    Article  CAS  Google Scholar 

  • Liebermann DA, Hoffman B, Steinman RA . (1995). Molecular controls of growth arrest and apoptosis: p53-dependent and independent pathways. Oncogene 11: 199–210.

    CAS  PubMed  Google Scholar 

  • Lotem J, Benjamin H, Netanely D, Domany E, Sachs L . (2004). Induction in myeloid leukemic cells of genes that are expressed in different normal tissues. Proc Natl Acad Sci USA 101: 16022–16027.

    Article  CAS  Google Scholar 

  • Lotem J, Gal H, Kama R, Amariglio N, Rechavi G, Domany E et al. (2003). Inhibition of p53-induced apoptosis without affecting expression of p53-regulated genes. Proc Natl Acad Sci USA 100: 6718–6723.

    Article  CAS  Google Scholar 

  • Lotem J, Sachs L . (1993). Hematopoietic cells from mice deficient in wild-type p53 are more resistant to induction of apoptosis by some agents. Blood 82: 1092–1096.

    CAS  PubMed  Google Scholar 

  • Manakova TE, Tsvetaeva NV, Levina AA, Momotyuk KS, Sarkisyan GP, Khoroshko ND et al. (2001). In vivo production of cytokines by bone marrow stromal cells and macrophages from patients with myelodysplastic syndrome. Bull Exp Biol Med 132: 633–636.

    Article  CAS  Google Scholar 

  • May P, May E . (1999). Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene 18: 7621–7636.

    Article  CAS  Google Scholar 

  • Michalak E, Villunger A, Erlacher M, Strasser A . (2005). Death squads enlisted by the tumour suppressor p53. Biochem Biophys Res Commun 331: 786–798.

    Article  CAS  Google Scholar 

  • Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA et al. (1994). Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9: 1799–1805.

    CAS  PubMed  Google Scholar 

  • Moqattash S, Lutton JD . (1998). Leukemia cells and the cytokine network. Proc Soc Exp Biol Med 219: 8–27.

    Article  CAS  Google Scholar 

  • Niho Y, Asano Y . (1998). Fas/Fas ligand and hematopoietic progenitor cells. Curr Opin Hematol 5: 163–165.

    Article  CAS  Google Scholar 

  • O'Connor L, Harris AW, Strasser A . (2000). CD95 (Fas/APO-1) and p53 signal apoptosis independently in diverse cell types. Cancer Res 60: 1217–1220.

    CAS  PubMed  Google Scholar 

  • Oren M . (2003). Decision making by p53: life, death and cancer. Cell Death Differ 10: 431–442.

    Article  CAS  Google Scholar 

  • Owen-Schaub LB, Zhang W, Cusack JC, Angelo LS, Santee SM, Fujiwara T et al. (1995). Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol 15: 3032–3040.

    Article  CAS  Google Scholar 

  • Rosmarin AG, Yang Z, Resendes KK . (2005). Transcriptional regulation in myelopoiesis: hematopoietic fate choice, myeloid differentiation, and leukemogenesis. Exp Hematol 33: 131–143.

    Article  CAS  Google Scholar 

  • Selvakumaran M, Lin HK, Miyashita T, Wang HG, Krajewski S, Reed JC et al. (1994). Immediate early up-regulation of bax expression by p53 but not TGF beta 1: a paradigm for distinct apoptotic pathways. Oncogene 9: 1791–1798.

    CAS  PubMed  Google Scholar 

  • Strasser A, Harris AW, Huang DC, Krammer PH, Cory S . (1995). Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis. EMBO J 14: 6136–6147.

    Article  CAS  Google Scholar 

  • Takahashi S, Harigae H, Ishii KK, Inomata M, Fujiwara T, Yokoyama H et al. (2005). Over-expression of Flt3 induces NF-kappaB pathway and increases the expression of IL-6. Leuk Res 29: 893–899.

    Article  CAS  Google Scholar 

  • Tenen DG . (2003). Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer 3: 89–101.

    Article  CAS  Google Scholar 

  • Trikha M, Corringham R, Klein B, Rossi JF . (2003). Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence. Clin Cancer Res 9: 4653–4665.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uriarte SM, Joshi-Barve S, Song Z, Sahoo R, Gobejishvili L, Jala VR et al. (2005). Akt inhibition upregulates FasL, downregulates c-FLIPs and induces caspase-8-dependent cell death in Jurkat T lymphocytes. Cell Death Differ 12: 233–242.

    Article  CAS  Google Scholar 

  • Vlahos CJ, Matter WF, Hui KY, Brown RF . (1994). A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 269: 5241–5248.

    CAS  PubMed  Google Scholar 

  • Yano H, Agatsuma T, Nakanishi S, Saitoh Y, Fukui Y, Nonomura Y et al. (1995). Biochemical and pharmacological studies with KT7692 and LY294002 on the role of phosphatidylinositol 3-kinase in Fc epsilon RI-mediated signal transduction. Biochem J 312(Part 1): 145–150.

    Article  CAS  Google Scholar 

  • Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M . (1991). Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352: 345–347.

    Article  CAS  Google Scholar 

  • Zhang J, Zhang D, Hua Z . (2004). FADD and its phosphorylation. IUBMB Life 56: 395–401.

    Article  CAS  Google Scholar 

  • Zhu J, Emerson SG . (2002). Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene 21: 3295–3313.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the following grants: NIH 1 RO1 HL 70530-01 (DAL) NIH, RO1 CA081168-06 (BH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D A Liebermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vesely, D., Hoffman, B. & Liebermann, D. Phosphatidylinositol 3-kinase/Akt signaling mediates interleukin-6 protection against p53-induced apoptosis in M1 myeloid leukemic cells. Oncogene 26, 3041–3050 (2007). https://doi.org/10.1038/sj.onc.1210109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210109

Keywords

This article is cited by

Search

Quick links