Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

All-optical bit storage in a fibre laser by optomechanically bound states of solitons

A Corrigendum to this article was published on 29 November 2016

This article has been updated

Abstract

Soliton fibre lasers mode-locked at a high harmonic of their round-trip frequency have many potential applications, from telecommunications to data storage1. Control of multiple pulses in passively mode-locked fibre lasers has, however, proved very difficult to achieve. This has recently changed with the advent of fibre lasers mode-locked by intense optomechanical interactions in a short length of photonic crystal fibre2,3. Optomechanical coupling between cavity modes gives rise to highly stable, optomechanically bound, laser soliton states. The repetition rate of these states corresponds to the mechanical resonant frequency in the photonic crystal fibre core4, which can be a few gigahertz. Here we show that this system can be successfully used for programmable generation and storage of gigahertz-rate soliton sequences over many hours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustrating optomechanical interactions in a several-metre-long cavity.
Figure 2: Experimental set-up.
Figure 3: Generation of a soliton sequence in the fibre laser cavity.
Figure 4: Storage of the soliton sequence for 100 h.
Figure 5: Optomechanical interactions in the PCF.

Similar content being viewed by others

Change history

  • 20 October 2016

    In the version of this Letter originally published, in the Acknowledgements, the name ‘G. Onishchukov’ was misspelt. This error has now been corrected in the online versions of the Letter.

References

  1. Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nature Photon. 6, 84–92 (2012).

    Article  ADS  Google Scholar 

  2. Pang, M. et al. Stable subpicosecond soliton fiber laser passively mode-locked by gigahertz acoustic resonance in photonic crystal fiber core. Optica 2, 339–342 (2015).

    Article  ADS  Google Scholar 

  3. He, W., Pang, M. & Russell, P. St.J. Wideband-tunable soliton fiber laser mode-locked at 1.88 GHz by optoacoustic interactions in solid-core PCF. Opt. Express 23, 24945–24954 (2015).

    Article  ADS  Google Scholar 

  4. Kang, M. S., Nazarkin, A., Brenn, A. & Russell, P. St.J. Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators. Nature Phys. 5, 276–280 (2009).

    Article  ADS  Google Scholar 

  5. Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nature Photon. 4, 471–476 (2010).

    Article  ADS  Google Scholar 

  6. Tanguy, Y., Ackemann, T. & Firth, W. J. Realization of a semiconductor-based cavity soliton laser. Phys. Rev. Lett. 100, 013907 (2008).

    Article  ADS  Google Scholar 

  7. Garbin, B., Javaloyes, J., Tissoni, G. & Barland, S. Topological solitons as addressable phase bits in a driven laser. Nature Commun. 6, 5915 (2015).

    Article  ADS  Google Scholar 

  8. Marconi, M., Javaloyes, J., Balle, S. & Giudici, M. How lasing localized structures evolve out of passive mode locking. Phys. Rev. Lett. 112, 223901 (2014).

    Article  ADS  Google Scholar 

  9. Herr, T. et al. Temporal solitons in optical microresonators. Nature Photon. 8, 145–152 (2014).

    Article  ADS  Google Scholar 

  10. Grelu, P. & Soto-Crespo, J. M. Temporal soliton ‘molecules’ in mode-locked lasers: collisions, pulsations and vibrations. Lect. Notes Phys. 751, 137–173 (2008).

    MathSciNet  MATH  Google Scholar 

  11. Grudinin, A. B. & Gray, S. Passive harmonic mode locking in soliton fiber lasers. J. Opt. Soc. Am. B 14, 144–154 (1997).

    Article  ADS  Google Scholar 

  12. Jang, J. K., Erkintalo, M., Murdoch, S. G. & Coen, S. Ultraweak long-range interactions of solitons observed over astronomical distances. Nature Photon. 7, 657–663 (2013).

    Article  ADS  Google Scholar 

  13. Chouli, S. & Grelu, P. Rains of solitons in a fiber laser. Opt. Express 17, 11776–11781 (2009).

    Article  ADS  Google Scholar 

  14. Jang, J. K., Erkintalo, M., Coen, S. & Murdoch, S. G. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons. Nature Commun. 6, 7370 (2015).

    Article  ADS  Google Scholar 

  15. Marconi, M. et al. Control and generation of localized pulses in passively mode-locked semiconductor lasers. IEEE J. Sel. Top. Quantum Electron. 21, 1101210 (2015).

    Google Scholar 

  16. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article  ADS  Google Scholar 

  17. Haus, H. A. & Wong, W. S. Solitons in optical communications. Rev. Mod. Phys. 68, 423–444 (1996).

    Article  ADS  Google Scholar 

  18. Carter, G. M. et al. Transmission of dispersion-managed solitons at 20 Gbit/s over 20000 km. Electron. Lett. 35, 233–234 (1999).

    Article  Google Scholar 

  19. Haus, H. A. & Mecozzi, A. Noise of mode-locked lasers. IEEE J. Quantum Electron. 29, 983–996 (1993).

    Article  ADS  Google Scholar 

  20. Boyd, R. W. Nonlinear Optics (Academic, 2008).

    Google Scholar 

  21. Siegman, A. E. & Kuizenga, D. J. Modulator frequency detuning effects in the FM mode-locked laser. IEEE J. Quantum Electron. 6, 803–808 (1970).

    Article  ADS  Google Scholar 

  22. Dianov, E. M., Luchnikov, A. V., Pilipetskii, A. N. & Prokhorov, A. M. Long-range interaction of picosecond solitons through excitation of acoustic waves in optical fibers. Appl. Phys. B 54, 175–180 (1992).

    Article  ADS  Google Scholar 

  23. Pilipetskii, A. N., Golovchenko, E. A. & Menyuk, C. R. Acoustic effect in passively mode-locked fiber ring lasers. Opt. Lett. 20, 907–909 (1995).

    Article  ADS  Google Scholar 

  24. Grein, M. E., Haus, H. A., Chen, Y. & Ippen, E. P. Quantum-limited timing jitter in actively modelocked lasers. IEEE J. Quantum Electron. 40, 1458–1470 (2004).

    Article  ADS  Google Scholar 

  25. Falkovich, G., Kolokolov, I., Lebedev, V., Mezentsev, V. & Turitsyn, S. Non-Gaussian error probability in optical soliton transmission. Physica D 195, 1–28 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  26. Haus, H. A. & Mecozzi, A. Long-term storage of a bit stream of solitons. Opt. Lett. 17, 1500–1502 (1992).

    Article  ADS  Google Scholar 

  27. Moores, J. D., Wong, W. S. & Haus, H. A. Stability and timing maintenance in soliton transmission and storage rings. Opt. Commun. 113, 153–175 (1994).

    Article  ADS  Google Scholar 

  28. Newburg, N. R. & Swann, W. C. Low-noise fiber-laser frequency combs. J. Opt. Soc. Am. B 24, 1756–1770 (2007).

    Article  ADS  Google Scholar 

  29. Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. J. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005).

    Article  ADS  Google Scholar 

  30. Hartmann, M. J., Brandao, F. G. S. L. & Plenio, M. B. Quantum many-body phenomena in coupled cavity arrays. Laser Photon. Rev. 2, 527–556 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank T. Roethlingshoefer and B. Stiller from the Leuchs Division at MPL for providing some components and equipment for the experiments and G. Onishchukov for comments.

Author information

Authors and Affiliations

Authors

Contributions

The concept was proposed by M.P. and P.St.J.R., the experiments were carried out by M.P., W.H. and X.J., and the results were analysed by M.P. and W.H. The paper was written by all authors.

Corresponding author

Correspondence to M. Pang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3472 kb)

Supplementary information

Supplementary Movie 1 (MOV 4649 kb)

Supplementary information

Supplementary Movie 2 (MOV 6430 kb)

Supplementary information

Supplementary Movie 3 (MOV 18314 kb)

Supplementary information

Supplementary Movie 4 (MOV 18290 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, M., He, W., Jiang, X. et al. All-optical bit storage in a fibre laser by optomechanically bound states of solitons. Nature Photon 10, 454–458 (2016). https://doi.org/10.1038/nphoton.2016.102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing