Thermodynamics articles within Nature Communications

Featured

  • Article |

    A physical description of supercritical fluids remains challenging because common approximations for solids and gases do not apply to liquids. Bolmatov et al. identify a liquid/gas dynamic crossover of specific heat above the critical point, and formulate a theory to shed light on its nature.

    • Dima Bolmatov
    • , V. V. Brazhkin
    •  & K. Trachenko
  • Article
    | Open Access

    Many interesting chemical problems like photosynthesis and photovoltaics involve non-adiabatic dynamical phenomena, which are difficult to predict theoretically. Here, the authors develop a new numerical method capable of recovering quantum interferences that are neglected by conventional methods.

    • Vyacheslav N. Gorshkov
    • , Sergei Tretiak
    •  & Dmitry Mozyrsky
  • Article
    | Open Access

    The thermodynamics of unwinding polynucleotide duplexes can be determined from energy changes for DNA and mRNA interactions. Here the authors show that the ratio between mRNA/DNA and DNA/DNA duplex stability upstream of the 3′- spice sites is a characteristic that can contribute to intron–exon recognition.

    • Marina N. Nedelcheva-Veleva
    • , Mihail Sarov
    •  & Stoyno S. Stoynov
  • Article |

    The nature of liquid–liquid phase transitions remains inconclusive, because direct experimental evidence is limited by crystallization. Wei et al.observe it in a bulk metallic glass former, which is characterized by heat capacity maxima and sudden changes in both viscosity and local structures.

    • Shuai Wei
    • , Fan Yang
    •  & Ralf Busch
  • Article
    | Open Access

    The melting temperature of hydrogen drops at high pressures, which suggests the possible emergence of a low-temperature liquid state of metallic hydrogen. Chen et al.confirm the existence of this phase in simulations and show how the quantum motion of the protons has a critical role in its stabilization.

    • Ji Chen
    • , Xin-Zheng Li
    •  & Enge Wang
  • Article |

    Thermodynamics and information theory are closely related but the fundamental limitations of this relation are difficult to determine. Combining concepts from one-shot information theory, probability theory and statistical mechanics, the author quantifies extractable work in a non-equilibrium system.

    • Johan Åberg
  • Article |

    The usual laws of thermodynamics that are valid for macroscopic systems do not necessarily apply to the nanoscale, where quantum effects become important. Here, the authors develop a theoretical framework based on quantum information theory to properly treat thermodynamics at the nanoscale.

    • Michał Horodecki
    •  & Jonathan Oppenheim
  • Article |

    The spin Seebeck effect, which refers to a spin current induced by a temperature gradient, is experimentally well established but a comprehensive theoretical framework is still missing. Here the authors succeed in explaining the non-locality and in predicting a non-magnon origin of the effect.

    • Konstantin S. Tikhonov
    • , Jairo Sinova
    •  & Alexander M. Finkel’stein
  • Article
    | Open Access

    Transistors that operate by the passage of electrons through a single-dopant atom achieve the ultimate limit for the miniaturization of electronic devices, but only when multiple transistors are intimately connected can they become useful. Roche et al. demonstrate the equivalent of just this, connecting two such transistors to build a two-atom electron pump.

    • B. Roche
    • , R.-P. Riwar
    •  & X. Jehl
  • Article |

    Colloids consist of small particles distributed in another medium such as liquids or gases. Here, the demonstration that forces arising from the critical Casimir effect can control the interaction between particles offers new possibilities for the formation of colloidal nanostructures.

    • Van Duc Nguyen
    • , Suzanne Faber
    •  & Peter Schall
  • Article
    | Open Access

    Flavodoxin requires tight binding of its FMN cofactor to be active, but the residues involved are unknown. In this biophysical study, FMN binding is shown to change from nanomolar to picomolar affinity on extremely slow protein relaxation and the residues responsible for cofactor binding are identified.

    • Yves J.M. Bollen
    • , Adrie H. Westphal
    •  & Carlo P.M. van Mierlo
  • Article |

    Geometrically frustrated spin systems are a class of statistical mechanical models that have received widespread attention, especially in condensed matter physics. This study experimentally demonstrates a quantum information processor that can simulate the behaviour of such frustrated spin system.

    • Jingfu Zhang
    • , Man-Hong Yung
    •  & Jonathan Baugh
  • Article
    | Open Access

    Prenucleation clusters have been observed during the early stages of calcium carbonate formation, contrary to classical models. Here, computer simulations indicate that the clusters are composed of an ionic polymer with alternating calcium and carbonate ions, and a dynamic topology of chains, branches and rings.

    • Raffaella Demichelis
    • , Paolo Raiteri
    •  & Denis Gebauer
  • Article |

    Dissociation of ice into an ionic solid is rare due to the high energy cost of proton transfer. In this study, structure search simulation is used to predict the formation of a partially ionic phase in ice at low temperature and high pressure, which consists of coupled alternate layers of hydroxide and hydronium.

    • Yanchao Wang
    • , Hanyu Liu
    •  & Yanming Ma
  • Article |

    Advanced rechargeable lithium-ion batteries have potential applications in the renewable energy and sustainable road transport fields. Junget al. have developed a lithium battery that uses pre-existing concepts but has highly competitive energy densities, life span and cycling properties.

    • Hun-Gi Jung
    • , Min Woo Jang
    •  & Bruno Scrosati
  • Article |

    Graphene may be used in nanoscale electronics and devices, but the ability to synthesise uniform graphene with well-controlled layer numbers is necessary for these applications. Using a Ni–Mo alloy, this study demonstrates single-layer graphene growth with 100% surface coverage and tolerance to variations in growth conditions.

    • Boya Dai
    • , Lei Fu
    •  & Zhongfan Liu
  • Article |

    Intercalating alkali metals into picene—a hydrocarbon with five linearly fused benzene rings—results in superconducting materials. Now, alkali-metal-doped phenanthrene, which consists of three fused benzene rings, is also found to be superconducting, opening up a broader class of organic superconductors.

    • X.F. Wang
    • , R.H. Liu
    •  & X.H. Chen
  • Article
    | Open Access

    Spin ices are magnetic materials in which excitations equivalent to monopoles can occur. Using high-pressure techniques, Zhouet al. synthesize a new member of the spin ice family, Dy2Ge2O7, in which monopoles exist at higher densities, and can stabilize as dimers.

    • H.D. Zhou
    • , S.T. Bramwell
    •  & J.S. Gardner
  • Article
    | Open Access

    Transparent conducting oxides are wide bandgap conductors that have found a range of applications in optoelectronic devices. In this study, Hosono and colleagues fabricate the first transparent conducting oxide based on germanium.

    • Hiroshi Mizoguchi
    • , Toshio Kamiya
    •  & Hideo Hosono
  • Article |

    Property coupling by heteroepitaxy is severely limited in material combinations with highly dissimilar bonding. This report presents a chemical boundary condition methodology to actively engineer two-dimensional film growth in such systems that otherwise collapse into island formation and rough morphologies.

    • Elizabeth A. Paisley
    • , Mark. D. Losego
    •  & Jon-Paul Maria
  • Article
    | Open Access

    At extreme temperature and pressure, materials can form new dense phases with unusual physical properties. Here, laser-induced microexplosions are used to produce a superdense, stable, body-centred-cubic form of aluminium, which was previously predicted to exist at pressures above 380GPa.

    • Arturas Vailionis
    • , Eugene G. Gamaly
    •  & Saulius Juodkazis
  • Article
    | Open Access

    Being able to determine the wetting properties of individual nanoparticles would aid the preparation of particles with controlled surface properties. Isaet al. develop an in situ freeze-fracture shadow-casting method and use this to determine structural and thermodynamic properties of various 10 nm particles at fluid interfaces.

    • Lucio Isa
    • , Falk Lucas
    •  & Erik Reimhult
  • Article
    | Open Access

    von Willebrand factor (VWF) multimers mediate primary adhesion and aggregation of platelets. Jakobiet al. reveal a calcium-binding site in the VWF-A2 domain, and show that calcium binding encourages folding of the protein and has a role in mechanosensing.

    • Arjen J. Jakobi
    • , Alireza Mashaghi
    •  & Eric G. Huizinga
  • Article
    | Open Access

    Negative thermal expansion—contraction upon heating—is an unusual process that may be exploited to produce materials with zero or other controlled thermal expansion values. Azumaet al. observe negative thermal expansion in BiNiO3which is a result of Bi/Ni charge-transfer transitions.

    • Masaki Azuma
    • , Wei-tin Chen
    •  & J. Paul Attfield
  • Article
    | Open Access

    Temperature-controlled regulation of thermal conductivity is difficult to achieve because thermal properties do not change significantly through solid-state phase transitions. Here temperature control of thermal conductivities is demonstrated using liquid–solid phase transitions in a nanoparticle suspension.

    • Ruiting Zheng
    • , Jinwei Gao
    •  & Gang Chen
  • Article |

    Melting-related phenomena are of fundamental and applied interest, but the melting theory is poorly understood. Levitas and Samani develop an advanced phase-field theory of melting coupled to mechanics that resolves existing contradictions and reveals the features of melting phenomena.

    • Valery I Levitas
    •  & Kamran Samani
  • Article
    | Open Access

    In the pseudogap state of cuprates, although diamagnetic signals have been detected, a Meissner effect has never been observed. Morenzoni and colleagues probe the local diamagnetic response in the normal state of an underdoped layer showing that a 'barrier' layer exhibits a Meissner effect.

    • Elvezio Morenzoni
    • , Bastian M. Wojek
    •  & Ivan Božović
  • Article |

    The spatial scale over which metal–insulator transitions happen is not known, despite the importance of this phenomenon in basic and applied research. The authors show that in chromium-doped V2O3, with decreasing temperature, microscopic metallic domains coexist with an insulating background.

    • S. Lupi
    • , L. Baldassarre
    •  & M. Marsi
  • Article |

    Protein interactions in biological environments are expected to differ from the situationin vitro. In this study, a thermophoresis-based technique is described that allows the analysis of protein and small-molecule interactions in biological liquids; the work may allow more efficient drug development.

    • Christoph J. Wienken
    • , Philipp Baaske
    •  & Stefan Duhr
  • Article
    | Open Access

    Understanding the thermal transitions of confined polymers is important for the design of molecular scale devices. In this study, unusual thermal transitions are observed in polyethylene glycol chains incorporated in nanochannels of porous coordination polymers.

    • Takashi Uemura
    • , Nobuhiro Yanai
    •  & Susumu Kitagawa