Quantum fluids and solids articles from across Nature Portfolio

Quantum fluids and solids are substances in which the interaction between the constituent atoms or molecules is governed by the laws of quantum mechanics. The properties of these materials are strongly influenced by the motion of atoms even in their lowest energy state, known as zero-point motion.

Latest Research and Reviews

  • Research
    | Open Access

    Low-energy excitations of strongly correlated systems are described by the Tomonaga–Luttinger liquid theory. Here the authors employ Bragg spectroscopy to demonstrate a spin-incoherent Luttinger liquid in 6Li atoms using charge and spin excitations.

    • Danyel Cavazos-Cavazos
    • , Ruwan Senaratne
    •  & Randall G. Hulet
  • Research
    | Open Access

    Some materials can display magnetic order despite having spin-singlet ground state on individual magnetic sites. This arises due to exchange interactions mixing excited crystal electric field states. Here, Gao et al study and example of such a system, Ni2Mo3O8, and find that crystal electric field states in both the paramagnetic and antiferromagnetic states exhibit dispersive excitations.

    • Bin Gao
    • , Tong Chen
    •  & Pengcheng Dai
  • Research
    | Open Access

    The Mott insulator κ-(BEDT-TTF)2Cu2(CN)3 has been a strong candidate for a gapless quantum spin liquid, but recent experiments suggested a spin-gapped phase below 6 K. Pustogow et al. study the entropy of this phase by driving the system through the metal-insulator transition with a strain engineering approach.

    • A. Pustogow
    • , Y. Kawasugi
    •  & N. Tajima
  • Research |

    It is very challenging to model hydrogen at high pressures and low temperatures because quantum effects become significant. A state-of-the-art numerical study shows that these effects cause important changes to the predicted phase diagram.

    • Lorenzo Monacelli
    • , Michele Casula
    •  & Francesco Mauri
  • Research
    | Open Access

    Quantum turbulence typically entails reconnecting quantized vortices as seen in quantum fluids. Experiments with superfluid helium now show turbulent dynamics with negligible vortex reconnection, a regime dominated by interacting vortex waves at all length scales.

    • J. T. Mäkinen
    • , S. Autti
    •  & V. B. Eltsov

News and Comment

  • News & Views |

    Despite its technological importance, there remain gaps in our understanding of silicon’s electronic behaviour, especially at low temperatures. Measurements close to a metal–insulator transition show signs of a collective many-body quantum state.

    • Mark Lee
    Nature Physics 19, 614-615
  • News & Views |

    Evidence for an exotic form of the Kondo effect has been obtained by placing magnetic atoms on single-layer 1T-TaSe2, which is a quantum spin liquid candidate. Unlike conventional Kondo screening, which arises from conduction electrons in a metal, the Kondo effect in 1T-TaSe2 arises from charge-neutral particles known as spinons.

    Nature Physics 18, 1283-1284
  • Comments & Opinion |

    Twentieth-century utopian visions of a space-age future have been eclipsed by dystopian fears of climate change and environmental degradation. Avoiding such grim forecasts depends on materials innovation and our ability to predict and plan not only their behaviour but also their sustainable manufacture, use and recyclability.

    • Philip Ball
    Nature Materials 21, 962-967
  • News & Views |

    The hydrodynamic description of many-body quantum systems is a key part of our understanding of out-of-equilibrium physics. Exotic, highly constrained quantum particles called fractons require a treatment that goes beyond hydrodynamics.

    • Olalla Castro-Alvaredo
    Nature Physics 18, 858-859