Particle astrophysics articles within Nature Communications

Featured

  • Article
    | Open Access

    Hypothetical dark photon (DP) dark matter (DM) and axion DM might resonantly convert into electromagnetic waves in the solar corona. Here, the authors show upper limits on the axion-photon coupling and on the kinetic mixing coupling of DPDM and photon within 30-80 MHz in the solar corona radio observations.

    • Haipeng An
    • , Xingyao Chen
    •  & Yan Luo
  • Article
    | Open Access

    The origin of the diffuse gamma-ray background (DGRB) is unknown. Here, the authors show that the integrated gamma-ray flux from clusters can contribute up to 100% of the DGRB flux observed by Fermi-LAT above 100 GeV.

    • Saqib Hussain
    • , Rafael Alves Batista
    •  & Klaus Dolag
  • Article
    | Open Access

    One of the possible events signaling a neutrinoless double beta decay is a Xe atom decaying into a Ba ion and two electrons. Aiming at the realisation of a detector for such a process, the authors show that Ba ions can be efficiently trapped (chelated) in vacuum by an organic molecule layer on a surface.

    • P. Herrero-Gómez
    • , J. P. Calupitan
    •  & J. T. White
  • Article
    | Open Access

    Haloscopes aim at detecting axions by converting them into photons using high-quality resonant cavities, where the cavity resonance should be tuned with the unknown axion mass. Here, the authors improve exclusion limits using four phase-matched resonant cavities and a fast frequency scanning technique.

    • C. M. Adair
    • , K. Altenmüller
    •  & K. Zioutas
  • Article
    | Open Access

    It is known that cosmic rays could be accelerated by shock waves in supernova (SN) remnants. Here, the authors show that SN 1006 remnant is an efficient source of cosmic rays, providing observational support for the quasi-parallel acceleration mechanism.

    • Roberta Giuffrida
    • , Marco Miceli
    •  & Giovanni Peres
  • Article
    | Open Access

    The question of what axion mass would give rise to the observed dark matter abundance requires proper modelling of non-linear dynamics of the axion field in the early Universe. Here, the authors use adaptive mesh refinement simulations to predict a mass in the range in the range (40,180) microelectronvolts.

    • Malte Buschmann
    • , Joshua W. Foster
    •  & Benjamin R. Safdi
  • Article
    | Open Access

    Galactic center is one of the most important cosmic-ray sources. Here, the authors show GeV-TeV cosmic ray density in the central molecular zone is lower than the cosmic ray sea component, suggesting presence of high energy particle accelerator at the galactic center and existence of barrier.

    • Xiaoyuan Huang
    • , Qiang Yuan
    •  & Yi-Zhong Fan
  • Article
    | Open Access

    The IceCube Neutrino Observatory has been recording a flux of high-energy cosmic neutrinos since 2013. Here, the authors investigate the possibility of increasing its sensitivity by implementing wavelength shifting optics within IceCube’s drill holes.

    • Imre Bartos
    • , Zsuzsa Marka
    •  & Szabolcs Marka
  • Article
    | Open Access

    The composition of dark matter in the universe remains a mystery, with one hypothetical form being topological defects. Here the authors determine a stronger constraint on the coupling of this dark matter to atomic clocks on board global positioning satellites through the analysis of 16 years of archival data.

    • Benjamin M. Roberts
    • , Geoffrey Blewitt
    •  & Andrei Derevianko
  • Article
    | Open Access

    The Van Allen radiation belts are two zones of energetic particles encircling the Earth, but how electrons are accelerated to relativistic energies remains unclear. Here, the authors analyse a radiation belt event and provide evidence in favour of the ULF wave-driven radial diffusion mechanism.

    • Zhenpeng Su
    • , Hui Zhu
    •  & J. R. Wygant
  • Article |

    Gamma-ray bursts are short-lived luminous explosions at cosmological distances caused by jets from the deaths of massive stars. Bustamante et al. study neutrino, gamma-ray and cosmic-ray production by internal shocks, and find that multi-messenger observations are crucial to understand the evolving outflows.

    • Mauricio Bustamante
    • , Philipp Baerwald
    •  & Walter Winter
  • Article |

    TheFermispacecraft recently observed gamma-ray emission from supernova remnant W44, however, the mechanism is unclear. Here, the authors show that strong ion-neutral collisions in the remnant surrounding lead to the steepening of the energy spectrum of accelerated particles by one power.

    • M. A. Malkov
    • , P. H. Diamond
    •  & R. Z. Sagdeev
  • Article |

    The origin of the highest energy cosmic rays is still unknown. Here, Chakraborti and colleagues show that a recently discovered sub-population of type Ibc supernovae with mildly relativistic outflows can satisfy all required characteristics for an ultra-high-energy cosmic ray source.

    • S. Chakraborti
    • , A. Ray
    •  & P. Chandra