Natural hazards articles within Nature Communications

Featured

  • Article
    | Open Access

    In this study, Smith and colleagues employ analogue experiments to show the controlling parameters on sediment bedforms in pyroclastic density current deposits. The findings are applied and validated on natural deposits.

    • Gregory Smith
    • , Peter Rowley
    •  & Samuel Capon
  • Article
    | Open Access

    Landslides are damaging natural hazards and can often lead to unexpected casualties and property damage. Here, the authors conduct geodetic and hydrological data analyses of the Slumgullion landslide, Colorado, and quantify the mass movement to find it fits a power-law flow theory and responds to hydroclimatic variability.

    • Xie Hu
    • , Roland Bürgmann
    •  & Eric J. Fielding
  • Article
    | Open Access

    Every year, hundreds of people die at sea because of vessel accidents, and a key challenge in reducing these fatalities is to make Search and Rescue (SAR) planning more efficient. Here, the authors uncover hidden flow features that attract floating objects, providing specific information for optimal SAR planning.

    • Mattia Serra
    • , Pratik Sathe
    •  & George Haller
  • Article
    | Open Access

    Floods are an important natural disaster on the Indonesian island of Sumatra, but their driving mechanisms are not well understood. Here, the authors utilize data from twitter messages and local newspaper reports to show that convectively coupled Kelvin waves play a key role in promoting floods on Sumatra.

    • Dariusz B. Baranowski
    • , Maria K. Flatau
    •  & Marzuki
  • Article
    | Open Access

    Subglacial lakes and jökulhlaups (glacier outburst floods) are common in volcanic and glaciated environments, and can pose potential threats to communities living downstream. Here, the authors find that seismic tremor signals during subglacial floods can be used to locate and track the speed and size of the flood before it arrives at the river system, and improves previous methods of early glacial flood warning by a factor of 5.

    • Eva P. S. Eibl
    • , Christopher J. Bean
    •  & Kristin S. Vogfjörd
  • Article
    | Open Access

    There lacks a European cost-benefit analysis of possible protective measures against rising seas. Here the authors used a probabilistic data and modeling framework to estimate costs and benefits of coastal protection measures and found that at least 83% of flood damages could be avoided by dyke improvements along a third of the European coastline.

    • Michalis I. Vousdoukas
    • , Lorenzo Mentaschi
    •  & Luc Feyen
  • Article
    | Open Access

    A primary element of modern wildfire management is to aggressively suppress small fires before they become large, but benefits can be offset by the fact that these practices promote older forests that are more ‘flammable’. Here the authors show that this downside puts numerous human communities at elevated risk of fires in boreal Canada.

    • Marc-André Parisien
    • , Quinn E. Barber
    •  & Sean A. Parks
  • Article
    | Open Access

    Tropical cyclones can cause severe flooding when making landfall, but these water flows can often only be forecasted a few hours before. Here, the authors present a new approach using self-organizing maps and flow characteristic curves to predict tropical cyclone related runoff up to two days in advance.

    • Li-Chiu Chang
    • , Fi-John Chang
    •  & Edwin E. Herricks
  • Article
    | Open Access

    Natural hazards can have huge impacts on individuals and societies, however, monitoring the economic recovery in the aftermath of extreme events remains a challenge. Here, the authors find that Facebook posting activity of small businesses can be used to monitor post-disaster economic recovery, and can allow local governments to better target distribution of resources.

    • Robert Eyre
    • , Flavia De Luca
    •  & Filippo Simini
  • Article
    | Open Access

    Economic estimates of flood damages rely on depth–damage functions that are inadequately verified. Here, the authors assessed flood vulnerability in the US and found that current depth–damage functions consist of disparate relationships that match poorly with observations which better follow a bimodal beta distribution.

    • Oliver E. J. Wing
    • , Nicholas Pinter
    •  & Carolyn Kousky
  • Article
    | Open Access

    Giant rockslides creep slowly for centuries and then can fail catastrophically, posing major threats to society. Here, the authors use observational and experimental evidence to quantitatively capture the full spectrum of giant rockslide behaviour until collapse, that is modulated by hydro-mechanical response to short-term fluid pressure perturbations.

    • Federico Agliardi
    • , Marco M. Scuderi
    •  & Cristiano Collettini
  • Article
    | Open Access

    The degree of flooding in a particular location depends sensitively on local topography and bathymetry. Here the authors used the remarkability of flood events to estimate county-specific flood thresholds for shoreline counties along the Atlantic and Gulf coasts of the United States and found that several areas experience noticeable flooding at a height lower than existing thresholds.

    • Frances C. Moore
    •  & Nick Obradovich
  • Article
    | Open Access

    Tropical cyclones can cause severe damage, in particular through flooding of coastal areas. Here, the authors show that in addition to known impacts, tropical cyclone rainbands can cause meteotsunami waves that can contribute significantly to the total water levels and hence flooding risks.

    • Luming Shi
    • , Maitane Olabarrieta
    •  & John C. Warner
  • Article
    | Open Access

    In this study, the authors investigate thermal alteration of organic biomarkers to detect paleo earthquakes in the Japan Trench. The study shows that large earthquakes like the 2011 Tohoku-Oki earthquake can slip through different types of sediment rather than being restricted to the weakest layers.

    • Hannah S. Rabinowitz
    • , Heather M. Savage
    •  & James D. Kirkpatrick
  • Article
    | Open Access

    There are significant uncertainties of how large sea level changes due to Antarctic Ice Sheet melting could be. Here, the authors quantify the impact of different greenhouse gas emission scenarios and different Antarctic contributions to changes to extreme sea-level events and find that even under low emissions the occurrence of sea-level extremes could rise significantly due to Antarctic meltwater increase.

    • Thomas Frederikse
    • , Maya K. Buchanan
    •  & Roderik S. W. van de Wal
  • Article
    | Open Access

    Decrease of friction during seismic slip is linked to temperature increase and weak phases production inside the fault core. Here the authors propose a mathematical framework which explains the frictional behaviour of all materials reported in literature and precisely captures material weakening during fault slip.

    • Hadrien Rattez
    •  & Manolis Veveakis
  • Article
    | Open Access

    The permeability of a dome exerts a control on the outgassing efficiency of the underlying magma. The authors investigate the role of hydrothermal alteration on this process in the laboratory and use these data to model whether the overpressures generated are capable of promoting explosive behaviour.

    • Michael J. Heap
    • , Valentin R. Troll
    •  & Thomas R. Walter
  • Article
    | Open Access

    The role of solar and wind energy (SWE) in management of water-food-energy (WFE) nexus is largely neglected. Here the authors developed a trade-off frontier framework to quantify the water sustainability value of SWE and applied it in California, where they found that SWE penetration creates beneficial feedback for the WFE nexus by enhancing drought resilience and benefits groundwater sustainability over long run.

    • Xiaogang He
    • , Kairui Feng
    •  & Justin Sheffield
  • Article
    | Open Access

    There still lacks a forecast system that inform end-users regarding the drought impacts, which will be however important for drought management. Here the authors assess the feasibility of forecasting drought impacts using machine-learning and confirm that models, which were built with sufficient amount of reported drought impacts in a certain sector, are able to forecast drought impacts a few months ahead.

    • Samuel J. Sutanto
    • , Melati van der Weert
    •  & Henny A. J. Van Lanen
  • Article
    | Open Access

    On 22 December 2018, the western flank of Anak Krakatau collapsed into the sea of the Sunda Strait triggering a tsunami which killed approximately 430 people and displaced 33,000. Here, the authors show that Anak Krakatau exhibited an elevated state of activity several months prior to the collapse, including precursory thermal anomalies, an increase in the island’s surface area, and a gradual seaward motion of the southwestern flank.

    • Thomas R. Walter
    • , Mahmud Haghshenas Haghighi
    •  & Peter Gaebler
  • Article
    | Open Access

    “Reconstruction of precipitation variability from oxygen isotopes in the Mesoamerican and Caribbean region is made difficult by the occurrence of tropical cyclones. Here, the isotopic evolution of a tropical cyclone is studied in detail which helps disentangle the key processes governing rainfall isotope variability in the region.”

    • Ricardo Sánchez-Murillo
    • , Ana M. Durán-Quesada
    •  & Kim M. Cobb
  • Article
    | Open Access

    Forecasting aftershock earthquakes is a critical step in improving seismic hazard mitigation. The authors here combine Bayesian methods with extreme value theory to tackle this problem - and manage to estimate the maximum magnitude of an expected earthquake as well as the arrival times in a pre-defined window.

    • Robert Shcherbakov
    • , Jiancang Zhuang
    •  & Yosihiko Ogata
  • Article
    | Open Access

    The Al-Idrissi Fault System in the Alboran Sea is a major tectonic structure in its initial stage. By using bathymetric and seismic reflection data, the authors unravel a 3D geometry for the AIFS, which corresponds to a crustal-scale boundary and provides a unique model of the inception and growth of a young plate boundary fault system.

    • Eulàlia Gràcia
    • , Ingo Grevemeyer
    •  & César R. Ranero
  • Article
    | Open Access

    Determining if a volcanic eruption will behave effusively or explosively is crucial for predicting the potential hazard type and for planning effective mitigation. Here, the authors present a universal, fluid dynamic induced, break-up criterion for low viscosity melts.

    • T. J. Jones
    • , C. D. Reynolds
    •  & S. C. Boothroyd
  • Article
    | Open Access

    Tropical cyclone-induced coastal flooding will increase under climate change. Here the authors estimate the effects of sea level rise and tropical cyclone climatology change on late–21st–century flood hazards along the US Atlantic and Gulf Coasts and find that the effect of tropical cyclone change could surpass the effect of sea level rise at some areas in the Gulf of Mexico.

    • Reza Marsooli
    • , Ning Lin
    •  & Kairui Feng
  • Article
    | Open Access

    The state of the Main Marmara Fault (fault segment of the North Anatolian Fault) is widely discussed, towards whether it is creeping or locked. The authors here present seafloor geodetic measurements which indicate a complete locking of the fault in the central part of the Sea of Marmara. This provides significant information for the assessment of both seismic and potential tsunami hazard to Istanbul.

    • Dietrich Lange
    • , Heidrun Kopp
    •  & Louis Géli
  • Article
    | Open Access

    The larger particulates from reactor Unit 1 of the Fukushima Daiichi Nuclear Power Plant have received sparse attention compared to the Unit 2 particulate. Here the authors perform the higher-resolution and 3-dimentional analysis of several high-density micron-scale fragments, from within a larger Unit 1-derived representative ejecta particle.

    • Peter G. Martin
    • , Marion Louvel
    •  & Thomas B. Scott
  • Article
    | Open Access

    Spatial distribution has been rarely studied in global disaster risk models. Here the authors address damaged networked infrastructure at the asset level for a wider range of hazards and reveal a global Expected Annual Damages ranging from $3.1 to 22 billion with a particular vulnerability of transport infrastructure in Small Island Developing States.

    • E. E. Koks
    • , J. Rozenberg
    •  & S. Hallegatte
  • Perspective
    | Open Access

    Hurricane Maria hit Puerto Rico in 2017 and resulted in a complete loss of activity of the Public Health Laboratories. Here, the authors discuss the approach taken and tools developed to re-establish activity in these laboratories using a quality management system and the lessons learned in this process.

    • Margaret C. Hardy
    • , Rita C. Stinnett
    •  & Eduardo O’Neill
  • Article
    | Open Access

    Pyroclastic density currents (PDCs) are a major threat during explosive volcanic eruptions, hence the possibility to forecast them would be a vital improvement for risk mitigation. Here the authors present a 3D flow model to quantify the thermal patterns leading to volcanic ash plume collapse conditions.

    • Matteo Trolese
    • , Matteo Cerminara
    •  & Guido Giordano
  • Article
    | Open Access

    The spread of flood-induced failures in critical infrastructure systems is understudied. Here the authors apply the CaMa-Flood global river flood simulation model to estimate the flood-induced failures and their spread in China and the US and find that the number of flood-induced total failures is in-between that of random and localized damage given the same intensity.

    • Weiping Wang
    • , Saini Yang
    •  & Jianxi Gao
  • Article
    | Open Access

    Dynamics of peralkaline rhyolite eruptions remain elusive due to the lack of direct observations. Here the authors provide X-ray Computed Tomography, thermal modelling and field data of fluidal shaped pyroclasts and show that peralkaline rhyolite pumice cones are the product of moderate to intense eruptions.

    • Ben Clarke
    • , Eliza S. Calder
    •  & Gezahegn Yirgu
  • Article
    | Open Access

    Flood risk modelling neglects the location of people and assets. Here the authors applied machine learning techniques and high-resolution population data to reinvestigate the impact of population distributions on flood exposure and showed that populations are generally represented as risk-averse and largely avoiding obvious flood zones.

    • Andrew Smith
    • , Paul D. Bates
    •  & Jeff Neal
  • Article
    | Open Access

    The effect of fluid viscosity on fault mechanics is mainly conjectured by theoretical models. Here, the authors present experimental data from rock friction experiments, showing both static and dynamic friction coefficients to decrease with viscosity and dynamic friction to depend on the Sommerfeld number.

    • C. Cornelio
    • , E. Spagnuolo
    •  & M. Violay
  • Article
    | Open Access

    The 2016 Kaikōura earthquake in New Zealand raised the discussion about how a complex fault system operates. Here the authors propose a dynamic rupture scenario that reproduces key characteristics of the event and show that the fault system works at low apparent friction.

    • Thomas Ulrich
    • , Alice-Agnes Gabriel
    •  & Wenbin Xu
  • Article
    | Open Access

    Concept of learning from history assumes that information is handed between generations to avoid negative effect of hazards. Here the authors analysed human behaviour and decision making on post-flood settlements and showed flood memory faded away in two generations, which is insufficient to protect human settlements from rare catastrophic floods.

    • Václav Fanta
    • , Miroslav Šálek
    •  & Petr Sklenicka
  • Article
    | Open Access

    Active Atlantic hurricane seasons are favoured by positive sea surface temperature anomalies. Here the authors identify a new air-sea heat flux driver for these anomalies in the severe 2017 season, while the recent 2005 and 2010 severe seasons were mainly driven by weakened ocean overturning circulation.

    • Samantha Hallam
    • , Robert Marsh
    •  & Joël J.-M. Hirschi
  • Article
    | Open Access

    Phyllosilicate minerals are critical components of seismogenic fault, shear and subduction zones. Here, the authors provide a new deformation mechanism for phyllosilicates, based on newly discovered crystallographic defects in biotite (ripplocations), affecting our understanding of fault zone processes.

    • Joe Aslin
    • , Elisabetta Mariani
    •  & Michel W. Barsoum