Materials for optics articles within Nature Communications

Featured

  • Article |

    The development of practical photonic quantum technologies will be aided by the spatial control of entangled photons. Lenget al. achieve on-chip spatial control of entangled photons by using domain engineering, rather than by using external optical elements.

    • H.Y. Leng
    • , X.Q. Yu
    •  & S.N. Zhu
  • Article |

    Optoelectronic devices such as conventional semiconductor lasers are used to study the chaotic behaviour of nonlinear systems. Here chaos is observed for quantum-dot microlasers operating close to the quantum limit with potential for new directions in the study of chaos in quantum systems.

    • Ferdinand Albert
    • , Caspar Hopfmann
    •  & Ido Kanter
  • Article |

    Polycrystalline substrates are a hindrance to the realization of high-definition plasmonic nanostructures. In this paper the authors chemically grow large and thin gold single crystals, and show that they can be coupled with top-down fabrication methods to produce high-quality nanostructures with good optical properties.

    • Jer-Shing Huang
    • , Victor Callegari
    •  & Bert Hecht
  • Article |

    Lenses with superior performance with respect to conventional uniform materials are desirable. The authors show a three-dimensional lens, made of multilayered metamaterials and based on approximate transformation optics, which works in different polarizations at broad viewing angles and with wide bandwidth.

    • Hui Feng Ma
    •  & Tie Jun Cui
  • Article |

    The development of optical information processing depends on the demonstration of silicon-based all-optical circuit components. Here, the authors show a monolithic pulse compressor, compatible with current electronic processing technologies, which is able to function at low power input.

    • Dawn T.H. Tan
    • , Pang C. Sun
    •  & Yeshaiahu Fainman
  • Article
    | Open Access

    Optical cloaking has already been demonstrated in two dimensions, and also in three dimensions for a limited range of angles. Now, Ma and Cui present a metamaterial-based cloaking device that can shield an object lying on the ground plane from all viewing angles at microwave frequencies.

    • Hui Feng Ma
    •  & Tie Jun Cui