Heart stem cells

Heart stem or progenitor cells are multipotent cells residing in the adult mammalian heart that are capable of self-renewing and generating coronary vessels and heart muscle cells called cardiomyocytes. Heart stem cells can contribute to new cardiomyocyte formation following experimental myocardial infarction in mice.

Latest Research and Reviews

News and Comment

  • News & Views |

    Early studies showing that KIT+ cardiac progenitor cells (CPCs) could differentiate into cardiomyocytes generated excitement regarding their potential therapeutic application. Subsequent studies called their functional relevance into question, and while claims for a contribution of KIT+ CPCs to myocardial regeneration continue, two new studies confirm the doubts about their relevance to cardiomyogenesis and provide unexpected new insights.

    • Giovanni Maroli
    •  & Thomas Braun
  • Comments & Opinion |

    Myocardial infarction can cause irreversible heart muscle cell damage and lingering cardiac problems that can eventually lead to heart failure. For over a decade, researchers have been trying to coax stem cells to differentiate into cardiomyocytes to repair damaged heart tissue, with limited success. In 'Bedside to Bench', Christine L. Mummery and Richard T. Lee lay out a framework for re-evaluating cardiac cell therapies in the context of two recent clinical trials, in which autologous cardiac stem cells derived from heart biopsies were transferred into patients, with promising, albeit difficult to interpret, results. Results from previous clinical trials using autologous bone marrow–derived adult stem cells to induce cardiac regeneration add to the debate about how to cautiously move forward in the cardiac regeneration field and to the questions that need to be urgently answered at the bench. In 'Bench to Bedside', Young-Jae Nam, Kunhua Song and Eric N. Olson discuss a number of recent studies in rodents showing that cardiac fibroblasts can be reprogrammed, via miRNAs and a transcription factor 'cocktail', to express cardiac genes, which resulted in improved cardiac function in the animals, suggesting a new way forward for fixing damaged heart tissue.

    • Christine L Mummery
    •  & Richard T Lee
    Nature Medicine 19, 412-413