Halogen bonding articles within Nature Chemistry

Featured

  • Article |

    Halogen-bonded co-crystals of a fluorinated azobenzene derivative and a volatile co-former can be cut, carved or engraved with micrometre-scale precision using low-power visible light. The proposed mechanism involves the local evaporation of the volatile component followed by recrystallization of the azobenzene co-former near the edge of the irradiation area.

    • T. H. Borchers
    • , F. Topić
    •  & C. J. Barrett
  • Article |

    Halogen bonding is known to get stronger with increasing halogen polarizability, but some trends of the periodic table break down for heavy elements owing to relativistic effects. Now, through distribution coefficient measurements and relativistic quantum mechanical calculations, AtI has been shown to form stronger halogen bonds than I2—meaning that astatine conforms to the trend.

    • Ning Guo
    • , Rémi Maurice
    •  & Nicolas Galland
  • News & Views |

    Rotaxanes with cyclodextrin end groups have been used as a platform to investigate anion binding in water, revealing that halogen bonding can serve as the basis for molecular recognition in aqueous solvents, which may have implications in medicinal chemistry and beyond.

    • Mark S. Taylor
  • Article |

    The ability to achieve strong molecular recognition in water is a key challenge for supramolecular chemistry. Now, halogen bonding — the attractive interaction between an electron-deficient halogen atom and a Lewis base — has been shown to be superior to hydrogen bonding for strong anion binding in water. Ripple image: © PhotoDisc/Getty Images.

    • Matthew J. Langton
    • , Sean W. Robinson
    •  & Paul D. Beer
  • News & Views |

    Halogen bonding connects a wide range of subjects — from materials science to structural biology, from computation to crystal engineering, and from synthesis to spectroscopy. The 1st International Symposium on Halogen Bonding explored the state of the art in this fast-growing field of research.

    • Mate Erdelyi
  • News & Views |

    The behaviour of di-selenol enzyme mimics indicates that a halogen bond between selenium and iodine, and a chalcogen interaction between the two selenium atoms, play an important role in the activation of thyroid hormones.

    • Pierangelo Metrangolo
    •  & Giuseppe Resnati