Exoplanets

  • Article
    | Open Access

    Imaging of low-mass exoplanets can be achieved once the thermal background in the mid-infrared (MIR) wavelengths can be mitigated. Here, the authors present a ground-based MIR observing approach enabling imaging low-mass temperate exoplanets around nearby stars.

    • K. Wagner
    • , A. Boehle
    •  & T. de Zeeuw
  • Article
    | Open Access

    In the habitable zone concept, a planet’s carbon dioxide-water greenhouse maintains surface liquid water. Here, the authors estimate how many Earthlike exoplanets are needed to detect a relationship between stellar flux and the atmospheric carbon dioxide predicted by carbon cycle modeling.

    • Owen R. Lehmer
    • , David C. Catling
    •  & Joshua Krissansen-Totton
  • Article
    | Open Access

    Establishing diagnostics for terrestrial exoplanets are crucial for their characterization. Here, the authors show brightness modulations of Venus are caused by planetary-scale waves superimposed on the super-rotating winds can be used to detect existence of an atmosphere if detected at an exoplanet.

    • Y. J. Lee
    • , A. García Muñoz
    •  & S. Watanabe
  • Article
    | Open Access

    In this study, the authors investigate in the influence of atmospheric dust on the habitability of exoplanets. They find that atmospheric dust may postpone planetary water loss; for tidally locked planets in particular, dust can significantly widen the habitable zone by cooling the day side and warming the night side.

    • Ian A. Boutle
    • , Manoj Joshi
    •  & Krisztian Kohary
  • Article
    | Open Access

    With the discovery of large rocky exoplanets called Super-Earths, questions have arisen regarding the properties of their interiors and their ability to produce a magnetic field. Here, the authors show that under high pressure, molten silicates are semi-metallic and that magma oceans would host a dynamo process.

    • François Soubiran
    •  & Burkhard Militzer
  • Article
    | Open Access

    Observations of Jupiter’s magnetosphere provide opportunities to understand how magnetic fields interact with particles. Here, the authors report that the chorus wave power is increased in the vicinity of Europa and Ganymede. The generated waves are able to accelerate particles to very high energy.

    • Y. Y. Shprits
    • , J. D. Menietti
    •  & D. A. Gurnett
  • Article
    | Open Access

    Large variations in insolation experienced by circumbinary planets raise the question of the habitability of such planets. Here, the authors show that while the changing insolation does not radically affect habitability, it does impact on the planet’s climate and on the interpretation of future observations.

    • Max Popp
    •  & Siegfried Eggl
  • Article
    | Open Access

    Theory predicts a deficit of super-Earth sized planets, which orbit close to their host star. Here, Lundkvist et al. use data from the NASA Kepler mission to show that this deficit is also seen in observations, thereby providing new insight into exoplanetary systems.

    • M. S. Lundkvist
    • , H. Kjeldsen
    •  & T. R. White
  • Article
    | Open Access

    The atmosphere of a transiting planet shields the stellar radiation enabling size and density stratification to be estimated. Here, the authors study Venus and show that the measured radius depends on the wavelength used, which has implications for Venus’s ionosphere and may help in planning future missions.

    • Fabio Reale
    • , Angelo F. Gambino
    •  & Giuseppe Piccioni