Cyclic nucleotide-gated cation channels articles within Nature Communications

Featured

  • Article
    | Open Access

    NaK is a bacterial non-selective cation channel. Here, the authors use solution NMR to show that selectivity filter (SF) in NaK is dynamic, with structural differences between the Na+ and K + -bound states. The conformation of the SF is communicated to the pore-lining helices similarly as in the K + -selective channels.

    • Adam Lewis
    • , Vilius Kurauskas
    •  & Katherine Henzler-Wildman
  • Article
    | Open Access

    Sea urchin hyperpolarization-activated cyclic nucleotide-gated (spHCN) ion channels channels are activated by membrane hyperpolarization instead of depolarization and undergo inactivation with hyperpolarization. Here authors apply transition metal ion FRET, patch-clamp fluorometry and Rosetta modeling to measure differences in the structural rearrangements between activation and inactivation of spHCN channels.

    • Gucan Dai
    • , Teresa K. Aman
    •  & William N. Zagotta
  • Article
    | Open Access

    SthK, a cyclic nucleotide-gated ion channel from Spirochaeta thermophila activates slowly upon cAMP increase. Here, authors investigate cAMP-induced activation in purified SthK channels using stopped-flow assays and enzymatic catalysis and reveal that the cis/trans conformation of a conserved proline in the cyclic nucleotide-binding domain determines the activation kinetics of SthK.

    • Philipp A. M. Schmidpeter
    • , Jan Rheinberger
    •  & Crina M. Nimigean
  • Article
    | Open Access

    The involvement of cAMP-dependent regulation of HCN4 in the chronotropic heart rate response is a matter of debate. Here the authors use a knockin mouse model expressing cAMP-insensitive HCN4 channels to discover an inhibitory nonfiring cell pool in the sinoatrial node and a tonic and mutual interaction between firing and nonfiring pacemaker cells that is controlled by cAMP-dependent regulation of HCN4, with implications in chronotropic heart rate responses.

    • Stefanie Fenske
    • , Konstantin Hennis
    •  & Christian Wahl-Schott
  • Article
    | Open Access

    Cyclic nucleotide-gated channels mediate olfactory and visual responses. Using a fluorescent cGMP derivative, Nache et al.show that the rate of cyclic nucleotide release from CNGA2 depends on the extent to which this tetrameric receptor is liganded, revealing hysteresis in the gating mechanism.

    • Vasilica Nache
    • , Thomas Eick
    •  & Klaus Benndorf
  • Article |

    Cyclic nucleotide-gated channels are apparently voltage insensitive despite having the S4-type voltage sensor. Marchesiet al.show that the gating of wild-type CNGA1 and native CNG channels is voltage-independent in the presence of Li+, Na+ and K+, but that it is voltage-dependent in the presence of Rb+, Cs+ and organic cations.

    • Arin Marchesi
    • , Monica Mazzolini
    •  & Vincent Torre