Ceramics articles within Nature Communications

Featured

  • Perspective
    | Open Access

    Hypersonic vehicles experience extreme temperatures, high heat fluxes, and aggressive oxidizing environments. Here, the authors highlight key materials design principles for critical vehicle areas and strategies for advancing laboratory-scale materials to flight-ready components.

    • Adam B. Peters
    • , Dajie Zhang
    •  & Suhas Eswarappa Prameela
  • Article
    | Open Access

    Four-dimensional (4D) printing ceramics is a challenge due to their weak deformability. Here, the authors report a hydrogel-dehydration-driven direct 4D printing approach, enabling simple and efficient manufacturing of various complex ceramic objects

    • Rong Wang
    • , Chao Yuan
    •  & Qi Ge
  • Article
    | Open Access

    The nucleation of calcium silicate hydrate is a crucial step in cement hydration, but is still a poorly understood process. Here the authors use atomistic simulations to study primary particles and their aggregation, revealing a potential C-S-H “basic building block”.

    • Xabier M. Aretxabaleta
    • , Jon López-Zorrilla
    •  & Hegoi Manzano
  • Article
    | Open Access

    Mechanically robust, flexible and thermally insulating ceramic aerogels are challenging to obtain due to the conflicting nature of these properties. Here the authors resolved these contradictions and developed a strong yet flexible aerogel, for application in extreme conditions, by laminated structure design.

    • Lei Su
    • , Shuhai Jia
    •  & Hongjie Wang
  • Article
    | Open Access

    In this work, the authors use near-field ptychographic nanotomography to visualize cement hydration in situ. They report hydration features with submicrometer detail including calcium silicate dissolution rates, etch-pit growth rates and water-to-air porosity evolution.

    • Shiva Shirani
    • , Ana Cuesta
    •  & Miguel A. G. Aranda
  • Article
    | Open Access

    Despite advances in additive manufacturing of piezoceramics, resultant transducers generally suffer from high porosity, weak piezoelectric responses, and limited geometry. Here, authors report the design and printing of fully packaged freeform ultrasonic transducers capable of traveling inside mm-sized channels and deliver localized high ultrasound energy.

    • Haotian Lu
    • , Huachen Cui
    •  & Xiaoyu (Rayne) Zheng
  • Article
    | Open Access

    In 3D ceramic printing, the need for additional supports can increase processing time and introduce defects during post-processing removal. Here, authors merge direct ink writing and up-conversion particles-assisted photopolymerization under near-infrared irradiation for support-free printing with controlled curing rates reducing material waste, printing time, and post-processing steps.

    • Yongqin Zhao
    • , Junzhe Zhu
    •  & Ren Liu
  • Article
    | Open Access

    Many ceramics and semiconductors are brittle at moderate temperatures, which can be a concern for applications. Here authors present a theoretical approach based on local misfit energy to accurately derive the Peierls stress and model the dislocation process in SrTiO3, which provides insights into the plasticity around room temperature.

    • Yi Li
    • , Xiangyang Liu
    •  & Chunlei Wan
  • Article
    | Open Access

    The effect of aliovalent doping on grain boundary is not yet fully understood at the atomic level. Here, the authors report grain boundary structural transformation in α-Al2O3 is induced by co-segregation of multiple dopants using atomic-resolution electron microscopy and theoretical calculations.

    • Toshihiro Futazuka
    • , Ryo Ishikawa
    •  & Yuichi Ikuhara
  • Article
    | Open Access

    Dislocation engineering is important for designing structural materials. Here the authors demonstrate that a high-entropy oxide ceramic with a high density of edge dislocations can be stabilized by increasing the compositional complexity, resulting in enhanced fracture toughness.

    • Yi Han
    • , Xiangyang Liu
    •  & Chunlei Wan
  • Article
    | Open Access

    The transportation sector is gradually evolving to become independent of fossil fuels. Here, the authors report a metal-based monolithic solid oxide fuel cell with a power density of 5.6 kW/L suitable for transport applications.

    • Stéven Pirou
    • , Belma Talic
    •  & Anke Hagen
  • Article
    | Open Access

    The contribution of vibrations to the stability of high-entropy ceramics is still controversial. Here the authors computationally integrate disorder parameterization, phonon modelling, and thermodynamic characterization to investigate the role of vibrations to the stability of high-entropy carbides.

    • Marco Esters
    • , Corey Oses
    •  & Stefano Curtarolo
  • Article
    | Open Access

    Although polarized Raman microscopy is sensitive to orientation changes, quantitative information has been missing. Here, the authors use simultaneous registration of multiple Raman scattering spectra obtained at different polarizations and show quantitative orientation mapping

    • Oleksii Ilchenko
    • , Yuriy Pilgun
    •  & Anja Boisen
  • Article
    | Open Access

    Cracks propagate preferentially along grain boundaries, but what happens exactly at the atomic scale remains unclear. Here, the authors combine atomic-scale observations and first-principles calculations to show local coordination chemistry at a dopant-segregated alumina grain boundary core dictates the atomic bond-breaking path.

    • Shun Kondo
    • , Akihito Ishihara
    •  & Yuichi Ikuhara
  • Article
    | Open Access

    Sintering hexagonal boron nitride until it is more than 96% dense remains a challenge. Here, the authors mix cubic boron nitride particles into hexagonal boron nitride flakes and sinter the combined powders to obtain dense hexagonal boron nitride ceramics with significantly increased strength.

    • Haotian Yang
    • , Hailiang Fang
    •  & Jianlin Li
  • Article
    | Open Access

    Highly ordered and compositionally complex ceramics are prone to disordering under irradiation, but exactly how is unclear. Here, the authors use high resolution microscopy to directly image the order-to-disorder phase transformations in Ti3AlC2 into otherwise unattainable solid solutions.

    • Chenxu Wang
    • , Tengfei Yang
    •  & Yugang Wang
  • Article
    | Open Access

    Little is known about diffusion along metal/ceramic interfaces even though it controls the physical behavior and lifetimes of many devices (including batteries, microelectronics, and jet engines). Here, the authors show that diffusion along a nickel/sapphire interface is abnormally fast due to nickel vacancies and generalise their findings to a wide-range of metal/ceramic systems.

    • Aakash Kumar
    • , Hagit Barda
    •  & David J. Srolovitz
  • Article
    | Open Access

    Sandwich structures such as corrugated cardboard offer low weight and high bending stiffness, but they are difficult to produce at the nanoscale. Here, the authors combine webbing and perforation to produce alumina ‘nanocardboard’ with ultralow areal density that recovers without damage from extreme deformation.

    • Chen Lin
    • , Samuel M. Nicaise
    •  & Igor Bargatin
  • Article
    | Open Access

    The development of potassium-ion batteries requires cathode materials that can maintain the structural stability during cycling. Here the authors have developed honeycomb-layered tellurates K2M2TeO6 that afford high ionic conductivity and reversible intercalation of large K ions at high voltages.

    • Titus Masese
    • , Kazuki Yoshii
    •  & Masahiro Shikano
  • Article
    | Open Access

    Fabricating complex nanodevices requires joining techniques such as welding, common for metals but still out of reach for ceramics. Here the authors use MgO as a solder in a transmission electron microscope with a CO2 atmosphere to weld ceramic nanowires, and show their novel technique can also weld bulk ceramics.

    • Liqiang Zhang
    • , Yushu Tang
    •  & Jianyu Huang
  • Article
    | Open Access

    Space-charges in polycrystalline materials can drive segregation of dopants, however an in-depth understanding of this process is still missing. Here, the authors show that in polycrystalline perovskites the space-charge segregation and interfacial structure are nearly identical irrespective of the interface type.

    • Hye-In Yoon
    • , Dong-Kyu Lee
    •  & Sung-Yoon Chung
  • Article
    | Open Access

    To improve mechanical properties in ceramics through grain boundary engineering, precise mechanical characterization of individual boundaries is vital yet difficult to achieve. Here authors perform experiments using an in situ scanning electron microscopy based double cantilever beam test, allowing to directly view and measure stable crack growth in silicon carbide.

    • Giorgio Sernicola
    • , Tommaso Giovannini
    •  & Finn Giuliani
  • Article
    | Open Access

    Hypersonic and aerospace applications motivate development of materials with improved resistance against ablation and oxidation at high temperatures. Here authors demonstrate a quaternary carbide, where sealing by surface oxides, slow oxygen diffusion and a graded structure yield improved ablation resistance over established ceramics.

    • Yi Zeng
    • , Dini Wang
    •  & Ping Xiao
  • Article
    | Open Access

    Shaping ceramics into complex forms is a formidable goal. Here, the authors present an approach to self-shaping ceramics, inspired by self-folding processes in plants, in which the ceramic microstructure is embedded with aligned platelets that control the orientation of heat-induced shrinkage.

    • Fabio L. Bargardi
    • , Hortense Le Ferrand
    •  & André R. Studart
  • Article
    | Open Access

    It is suggested that the optical and mechanical properties of transparent ceramics become very favourable if they can be synthesized as nanocrystals. Here, the authors report direct conversion of bulk glass starting material to pore-free nano-polycrystalline silicate garnet at high pressure and temperature.

    • T. Irifune
    • , K. Kawakami
    •  & T. Shinmei
  • Article
    | Open Access

    Materials that can store and release heat on demand are of use for energy storage applications. Here, the authors discover a ceramic material that can reversibly store energy from heat, light or electricity and release this energy as heat through the application of pressure.

    • Hiroko Tokoro
    • , Marie Yoshikiyo
    •  & Shin-ichi Ohkoshi