Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural elucidation of a PRP8 core domain from the heart of the spliceosome

Abstract

The spliceosome is a complex ribonucleoprotein (RNP) particle containing five RNAs and more than 100 associated proteins. One of these proteins, PRP8, has been shown to interact directly with the splice sites and branch region of precursor-mRNAs (pre-mRNAs) and spliceosomal RNAs associated with catalysis of the two steps of splicing. The 1.85-Å X-ray structure of the core of PRP8 domain IV, implicated in key spliceosomal interactions, reveals a bipartite structure that includes the presence of an RNase H fold linked to a five-helix assembly. Analysis of mutant yeast alleles and cross-linking results in the context of this structure, coupled with RNA binding studies, suggests that domain IV forms a surface that interacts directly with the RNA structures at the catalytic core of the spliceosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of PRP8 domain IV.
Figure 2: Mapping of yeast mutant alleles and a 5′ splice site cross-link in the context of the PRP8 domain IV core.
Figure 3: Comparison of the PRP8 domain IV core with RNase H folds.
Figure 4: RNA Binding by PRP8 domain IV core.
Figure 5: Representations of the proposed PRP8 domain IV core RNA binding surface.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Krämer, A. The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu. Rev. Biochem. 65, 367–409 (1996).

    Article  Google Scholar 

  2. Staley, J.P. & Guthrie, C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92, 315–326 (1998).

    Article  CAS  Google Scholar 

  3. Burge, C.B., Tuschl, T. & Sharp, P.A. in The RNA World 2nd edn. (eds. Gesteland, R.F., Cech, T.R. & Atkins, J.F.) 525—560 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1999).

    Google Scholar 

  4. Brow, D.A. Allosteric cascade of spliceosome activation. Annu. Rev. Genet. 36, 333–360 (2002).

    Article  CAS  Google Scholar 

  5. Valadkhan, S., Mohammadi, A., Wachtel, C. & Manley, J.L. Protein-free spliceosomal snRNAs catalyze a reaction that resembles the first step of splicing. RNA 13, 2300–2311 (2007).

    Article  CAS  Google Scholar 

  6. Collins, C.A. & Guthrie, C. The question remains: is the spliceosome a ribozyme? Nat. Struct. Biol. 7, 850–854 (2000).

    Article  CAS  Google Scholar 

  7. Reyes, J.L., Gustafson, E.H., Luo, H.R., Moore, M.J. & Konarska, M.M. The C-terminal region of hPrp8 interacts with the conserved GU dinucleotide at the 5′ splice site. RNA 5, 167–179 (1999).

    Article  CAS  Google Scholar 

  8. Vidal, V.P., Verdone, L., Mayes, A.E. & Beggs, J.D. Characterization of U6 snRNA-protein interactions. RNA 5, 1470–1481 (1999).

    Article  CAS  Google Scholar 

  9. Grainger, R.J. & Beggs, J.D. Prp8 protein: at the heart of the spliceosome. RNA 11, 533–557 (2005).

    Article  CAS  Google Scholar 

  10. Teigelkamp, S., Newman, A.J. & Beggs, J.D. Extensive interactions of PRP8 protein with the 5′ and 3′ splice sites during splicing suggest a role in stabilization of exon alignment by U5 snRNA. EMBO J. 14, 2602–2612 (1995).

    Article  CAS  Google Scholar 

  11. MacMillan, A.M. et al. Dynamic association of proteins with the pre-mRNA branch region. Genes Dev. 8, 3008–3020 (1994).

    Article  CAS  Google Scholar 

  12. Pena, V., Liu, S., Bujnicki, J.M., Luhrmann, R. & Wahl, M.C. Structure of a multipartite protein-protein interaction domain in splicing factor Prp8 and its link to retinitis pigmentosa. Mol. Cell 25, 615–624 (2007).

    Article  CAS  Google Scholar 

  13. Query, C.C. & Konarska, M.M. Suppression of multiple substrate mutations by spliceosomal prp8 alleles suggests functional correlations with ribosomal ambiguity mutants. Mol. Cell 14, 343–354 (2004).

    Article  CAS  Google Scholar 

  14. Kuhn, A.N., Li, Z. & Brow, D.A. Splicing factor Prp8 governs U4/U6 RNA unwinding during activation of the spliceosome. Mol. Cell 3, 65–75 (1999).

    Article  CAS  Google Scholar 

  15. Collins, C.A. & Guthrie, C. Allele-specific genetic interactions between Prp8 and RNA active site residues suggest a function for Prp8 at the catalytic core of the spliceosome. Genes Dev. 13, 1970–1982 (1999).

    Article  CAS  Google Scholar 

  16. Turner, I.A., Norman, C.M., Churcher, M.J. & Newman, A.J. Dissection of Prp8 protein defines multiple interactions with crucial RNA sequences in the catalytic core of the spliceosome. RNA 12, 375–386 (2006).

    Article  CAS  Google Scholar 

  17. Kuhn, A.N., Reichl, E.M. & Brow, D.A. Distinct domains of splicing factor Prp8 mediate different aspects of spliceosome activation. Proc. Natl. Acad. Sci. USA 99, 9145–9149 (2002).

    Article  CAS  Google Scholar 

  18. Yang, K., Zhang, L., Xu, T., Heroux, A. & Zhao, R. Crystal structure of the β-finger domain of Prp8 reveals analogy to ribosomal proteins. Proc. Natl. Acad. Sci. USA 105, 13817–13822 (2008).

    Article  CAS  Google Scholar 

  19. Umen, J.G. & Guthrie, C. A novel role for a U5 snRNP protein in 3′ splice site selection. Genes Dev. 9, 855–868 (1995).

    Article  CAS  Google Scholar 

  20. Song, J.J., Smith, S.K., Hannon, G.J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434–1437 (2004).

    Article  CAS  Google Scholar 

  21. Nowotny, M., Gaidamakov, S.A., Crouch, R.J. & Yang, W. Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell 121, 1005–1016 (2005).

    Article  CAS  Google Scholar 

  22. Steiniger-White, M., Rayment, I. & Reznikoff, W.S. Structure/function insights into Tn5 transposition. Curr. Opin. Struct. Biol. 14, 50–57 (2004).

    Article  CAS  Google Scholar 

  23. Rupert, P.B. & Ferre-D'Amare, A.R. Crystal structure of a hairpin ribozyme-inhibitor complex with implications for catalysis. Nature 410, 780–786 (2001).

    Article  CAS  Google Scholar 

  24. Sashital, D.G., Cornilescu, G. & Butcher, S.E. U2–U6 RNA folding reveals a group II intron-like domain and a four-helix junction. Nat. Struct. Mol. Biol. 11, 1237–1242 (2004).

    Article  CAS  Google Scholar 

  25. Nissen, P., Hansen, J., Ban, N., Moore, P.B. & Steitz, T.A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

    Article  CAS  Google Scholar 

  26. Doherty, E.A. & Doudna, J.A. Ribozyme structures and mechanisms. Annu. Rev. Biochem. 69, 597–615 (2000).

    Article  CAS  Google Scholar 

  27. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  28. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  29. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000).

    Article  CAS  Google Scholar 

  30. Terwilliger, T.C. Automated main-chain model-building by template-matching and iterative fragment extension. Acta Crystallogr. D Biol. Crystallogr. 59, 38–44 (2002).

    Article  Google Scholar 

  31. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  32. McRee, D.E. XtalView/Xfit: a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999).

    Article  CAS  Google Scholar 

  33. Brenner, T.J. & Guthrie, C. Genetic analysis reveals a role for the C-terminus of the S. cerevisiae GTPase Snu114 during spliceosome activation. Genetics 170, 1063–1080 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Guthrie (University of California, San Francisco) for providing yeast strain YTB72 and the plasmid pJU186MAS, B. Hazes for technical assistance, and M. Glover and T. Wu for helpful discussions. This work was supported by an Operating Grant from the Canadian Institutes of Health Research (CIHR) and by funding from the Alberta Synchrotron Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M MacMillan.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, Supplementary Methods and Supplementary Discussion (PDF 1090 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritchie, D., Schellenberg, M., Gesner, E. et al. Structural elucidation of a PRP8 core domain from the heart of the spliceosome. Nat Struct Mol Biol 15, 1199–1205 (2008). https://doi.org/10.1038/nsmb.1505

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1505

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing