Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

A novel pathogenetic concept—antiviral immunity in lupus nephritis

Abstract

Lupus nephritis is a complication of systemic lupus erythematosus, a heterogeneous autoimmune syndrome involving multiple pathways. Accumulating data from the fields of genetics, clinical science, transcriptomics and basic immunology indicate that antiviral immunity has relevance in the pathogenesis of lupus nephritis. This idea is based on the existence of genetic variants that promote the persistence of nuclear particles in the extracellular space or inside lysosomes. Such nuclear particles mimic viral particles and their RNA or DNA components activate viral nucleic acid recognition receptors in antigen-presenting cells. These autoadjuvant effects of endogenous nucleic acids promote an inappropriate immune interpretation of the nuclear particles during antigen presentation. This process fosters the expansion of autoreactive T cells and B cells, which promotes autoantibody production and immune complex glomerulonephritis. The release of interferon α sets off an antiviral immune response with a coordinated induction of hundreds of antiviral genes both inside and outside the kidney. In this article we summarize the available data indicating that innate immunity triggers antiviral immunity in systemic lupus erythematosus. We also discuss the related implications for innovative therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible pathogenetic mechanisms of murine and/or human lupus.
Figure 2: How extracellular nuclear particles mimic viral particles to activate similar immune responses.
Figure 3: Mechanisms by which antiviral immunity might drive lupus nephritis.

Similar content being viewed by others

References

  1. Rahman, A. & Isenberg, D. A. Systemic lupus erythematosus. N. Engl. J. Med. 358, 929–939 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Goodnow, C. C. Multistep pathogenesis of autoimmune disease. Cell 130, 25–35 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Gaffney, P. M. et al. A genome-wide search for susceptibility genes in human systemic lupus erythematosus sib-pair families. Proc. Natl Acad. Sci. USA 95, 14875–14879 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gregersen, P. K. & Olsson, L. M. Recent advances in the genetics of autoimmune disease. Annu. Rev. Immunol. 27, 363–391 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kanta, H. & Mohan, C. Three checkpoints in lupus development: central tolerance in adaptive immunity, peripheral amplification by innate immunity and end-organ inflammation. Genes Immun. 10, 390–396 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Moser, K. L., Kelly, J. A., Lessard, C. J. & Harley, J. B. Recent insights into the genetic basis of systemic lupus erythematosus. Genes Immun. 10, 373–379 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Quintero-Del-Rio, A. I., Kelly, J. A., Kilpatrick, J., James, J. A. & Harley, J. B. The genetics of systemic lupus erythematosus stratified by renal disease: linkage at 10q22.3 (SLEN1), 2q34–35 (SLEN2), and 11p15.6 (SLEN3). Genes Immun. 3 (Suppl. 1), S57–S62 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Hom, G. et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N. Engl. J. Med. 358, 900–909 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Münz, C., Lünemann, J. D., Getts, M. T. & Miller, S. D. Antiviral immune responses: triggers of or triggered by autoimmunity? Nat. Rev. Immunol. 9, 246–258 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kojima, M., Motoori, T., Asano, S. & Nakamura, S. Histological diversity of reactive and atypical proliferative lymph node lesions in systemic lupus erythematosus patients. Pathol. Res. Pract. 203, 423–431 (2007).

    Article  PubMed  Google Scholar 

  11. McClain, M. T. et al. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat. Med. 11, 85–89 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Barzilai, O. et al. Epstein-Barr virus and cytomegalovirus in autoimmune diseases: are they truly notorious? A preliminary report. Ann. NY Acad. Sci. 1108, 567–577 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Zandman-Goddard, G. et al. Exposure to Epstein-Barr virus infection is associated with mild systemic lupus erythematosus disease. Ann. NY Acad. Sci. 1173, 658–663 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Marshak-Rothstein, A. & Rifkin, I. R. Immunologically active autoantigens: the role of toll-like receptors in the development of chronic inflammatory disease. Annu. Rev. Immunol. 25, 419–441 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Anders, H. J., Krug, A. & Pawar, R. D. Molecular mimicry in innate immunity? The viral RNA recognition receptor TLR7 accelerates murine lupus. Eur. J. Immunol. 38, 1795–1799 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Rönnblom, L., Alm, G. V. & Eloranta, M. L. Type I interferon and lupus. Curr. Opin. Rheumatol. 21, 471–477 (2009).

    Article  PubMed  CAS  Google Scholar 

  17. Poole, B. D. et al. Aberrant Epstein-Barr viral infection in systemic lupus erythematosus. Autoimmun. Rev. 8, 337–342 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rekvig, O. P., Bendiksen, S. & Moens, U. Immunity and autoimmunity induced by polyomaviruses: clinical, experimental and theoretical aspects. Adv. Exp. Med. Biol. 577, 117–147 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Feehally, J. et al. HLA has strongest association with IgA nephropathy in genome-wide analysis. J. Am. Soc. Nephrol. 21, 1791–1797 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stanescu, H. C. et al. Risk HLA-DQA1 and PLA2R1 alleles in idiopathic membranous nephropathy. N. Engl. J. Med. 364, 616–626 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Smith, K. G. & Clatworthy, M. R. FcγRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat. Rev. Immunol. 10, 328–343 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hotchkiss, R. S., Strasser, A., McDunn, J. E. & Swanson, P. E. Cell death. N. Engl. J. Med. 361, 1570–1583 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Strasser, A., Jost, P. J. & Nagata, S. The many roles of FAS receptor signaling in the immune system. Immunity 30, 180–192 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu, J. et al. Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J. Clin. Invest. 98, 1107–1113 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bygrave, A. E. et al. Spontaneous autoimmunity in 129 and C57BL/6 mice-implications for autoimmunity described in gene-targeted mice. PLoS Biol. 2, E243 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Russell, A. I. et al. Polymorphism at the C-reactive protein locus influences gene expression and predisposes to systemic lupus erythematosus. Hum. Mol. Genet. 13, 137–147 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Truedsson, L., Bengtsson, A. A. & Sturfelt, G. Complement deficiencies and systemic lupus erythematosus. Autoimmunity 40, 560–566 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Muñoz, L. E. et al. Autoimmunity and chronic inflammation–two clearance-related steps in the etiopathogenesis of SLE. Autoimmun. Rev. 10, 38–42 (2010).

    Article  PubMed  CAS  Google Scholar 

  29. Hanayama, R. et al. Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304, 1147–1150 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Mortensen, E. S. & Rekvig, O. P. Nephritogenic potential of anti-DNA antibodies against necrotic nucleosomes. J. Am. Soc. Nephrol. 20, 696–704 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Yasutomo, K. et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nat. Genet. 28, 313–314 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Muñoz, L. E., Lauber, K., Schiller, M., Manfredi, A. A. & Herrmann, M. The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat. Rev. Rheumatol. 6, 280–289 (2010).

    Article  PubMed  Google Scholar 

  33. Anders, H. J. Innate pathogen recognition in the kidney: toll-like receptors, NOD-like receptors, and RIG-like helicases. Kidney Int. 72, 1051–1056 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Hornung, V. et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science 314, 994–997 (2006).

    Article  PubMed  Google Scholar 

  36. Pichlmair, A. et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314, 997–1001 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Stacey, K. J. et al. The molecular basis for the lack of immunostimulatory activity of vertebrate DNA. J. Immunol. 170, 3614–3620 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Karikó, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

    Article  PubMed  CAS  Google Scholar 

  39. Huck, S., Deveaud, E., Namane, A. & Zouali, M. Abnormal DNA methylation and deoxycytosine-deoxyguanine content in nucleosomes from lymphocytes undergoing apoptosis. FASEB J. 13, 1415–1422 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Hof, D., Raats, J. M. & Pruijn, G. J. Apoptotic modifications affect the autoreactivity of the U1 snRNP autoantigen. Autoimmun. Rev. 4, 380–388 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Richardson, B. et al. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. 33, 1665–1673 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Cornacchia, E. et al. Hydralazine and procainamide inhibit T cell DNA methylation and induce autoreactivity. J. Immunol. 140, 2197–2200 (1988).

    CAS  PubMed  Google Scholar 

  43. Takeuchi, O. & Akira, S. Innate immunity to virus infection. Immunol. Rev. 227, 75–86 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Anders, H. J. Pseudoviral immunity–a novel concept for lupus. Trends Mol. Med. 15, 553–561 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Savarese, E. et al. U1 small nuclear ribonucleoprotein immune complexes induce type I interferon in plasmacytoid dendritic cells through TLR7. Blood 107, 3229–3234 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Lau, C. M. et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med. 202, 1171–1177 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Barrat, F. J. et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 202, 1131–1139 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pisitkun, P. et al. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312, 1669–1672 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Subramanian, S. et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc. Natl Acad. Sci. USA 103, 9970–9975 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Christensen, S. R. et al. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25, 417–428 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Savarese, E. et al. Requirement of Toll-like receptor 7 for pristane-induced production of autoantibodies and development of murine lupus nephritis. Arthritis Rheum. 58, 1107–1115 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Leadbetter, E. A. et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Means, T. K. et al. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J. Clin. Invest. 115, 407–417 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lartigue, A. et al. Role of TLR9 in anti-nucleosome and anti-DNA antibody production in lpr mutation-induced murine lupus. J. Immunol. 177, 1349–1354 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Wu, X. & Peng, S. L. Toll-like receptor 9 signaling protects against murine lupus. Arthritis Rheum. 54, 336–342 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Lenert, P. et al. DNA-like class R inhibitory oligonucleotides (INH-ODNs) preferentially block autoantigen-induced B-cell and dendritic cell activation in vitro and autoantibody production in lupus-prone MRL-Faslpr/lpr mice in vivo. Arthritis Res. Ther. 11, R79 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Patole, P. S. et al. G-rich DNA suppresses systemic lupus. J. Am. Soc. Nephrol. 16, 3273–3280 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Dong, L., Ito, S., Ishii, K. J. & Klinman, D. M. Suppressive oligodeoxynucleotides delay the onset of glomerulonephritis and prolong survival in lupus-prone NZB × NZW mice. Arthritis Rheum. 52, 651–658 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Wang, J. et al. The functional effects of physical interactions among Toll-like receptors 7, 8, and 9. J. Biol. Chem. 281, 37427–37434 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Lech, M. et al. Different roles of TiR8/Sigirr on toll-like receptor signaling in intrarenal antigen-presenting cells and tubular epithelial cells. Kidney Int. 72, 182–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Lech, M. et al. Interleukin-1 receptor-associated kinase-M suppresses systemic lupus erythematosus. Ann. Rheum. Dis. 70, 2207–2212 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Gilliet, M., Cao, W. & Liu, Y. J. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat. Rev. Immunol. 8, 594–606 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Allam, R., Sayyed, S. G., Kulkarni, O., Lichtnekert, J. & Anders, H. J. Mdm2 promotes systemic lupus erythematosus and lupus nephritis. J. Am. Soc. Nephrol. 22, 2016–2027 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Theofilopoulos, A. N., Baccala, R., Beutler, B. & Kono, D. H. Type I interferons (α/β) in immunity and autoimmunity. Annu. Rev. Immunol. 23, 307–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Han, G. M. et al. Analysis of gene expression profiles in human systemic lupus erythematosus using oligonucleotide microarray. Genes Immun. 4, 177–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Bekeredjian-Ding, I. B. et al. Plasmacytoid dendritic cells control TLR7 sensitivity of naive B cells via type I IFN. J. Immunol. 174, 4043–4050 (2005).

    Article  PubMed  Google Scholar 

  67. Nacionales, D. C. et al. Deficiency of the type I interferon receptor protects mice from experimental lupus. Arthritis Rheum. 56, 3770–3783 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Santiago-Raber, M. L. et al. Type-I interferon receptor deficiency reduces lupus-like disease in NZB mice. J. Exp. Med. 197, 777–788 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Braun, D., Geraldes, P. & Demengeot, J. Type I interferon controls the onset and severity of autoimmune manifestations in lpr mice. J. Autoimmun. 20, 15–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Espeli, M. et al. Local renal autoantibody production in lupus nephritis. J. Am. Soc. Nephrol. 22, 296–305 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lech, M. et al. IRF4 deficiency abrogates lupus nephritis despite enhancing systemic cytokine production. J. Am. Soc. Nephrol. 22, 1443–1452 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Enocsson, H. et al. Interferon-α mediates suppression of C-reactive protein: explanation for muted C-reactive protein response in lupus flares? Arthritis Rheum. 60, 3755–3760 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Becker, G. J., Waldburger, M., Hughes, G. R. & Pepys, M. B. Value of serum C-reactive protein measurement in the investigation of fever in systemic lupus erythematosus. Ann. Rheum. Dis. 39, 50–52 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gabay, C. et al. Absence of correlation between interleukin 6 and C-reactive protein blood levels in systemic lupus erythematosus compared with rheumatoid arthritis. J. Rheumatol. 20, 815–821 (1993).

    CAS  PubMed  Google Scholar 

  75. Patole, P. S. et al. Expression and regulation of Toll-like receptors in lupus-like immune complex glomerulonephritis of MRL-Fas(lpr) mice. Nephrol. Dial. Transplant. 21, 3062–3073 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Patole, P. S. et al. Coactivation of Toll-like receptor-3 and -7 in immune complex glomerulonephritis. J. Autoimmun. 29, 52–59 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Pawar, R. D. et al. Ligands to nucleic acid-specific toll-like receptors and the onset of lupus nephritis. J. Am. Soc. Nephrol. 17, 3365–3373 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Patole, P. S. et al. Viral double-stranded RNA aggravates lupus nephritis through Toll-like receptor 3 on glomerular mesangial cells and antigen-presenting cells. J. Am. Soc. Nephrol. 16, 1326–1338 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Allam, R. & Anders, H. J. The role of innate immunity in autoimmune tissue injury. Curr. Opin. Rheumatol. 20, 538–544 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Fluer, K. et al. Viral RNA induces type I interferon-dependent cytokine release and cell death in mesangial cells via MDA5. Implications for viral infection-associated glomerulonephritis. Am. J. Pathol. 175, 2014–2022 (2009).

    Article  CAS  Google Scholar 

  81. Allam, R. et al. Viral RNA and DNA sense common antiviral responses including type I interferons in mesangial cells. J. Am. Soc. Nephrol. 20, 1986–1996 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hägele, H., Allam, R., Pawar, R. D. & Anders, H. J. Double-stranded RNA activates type I interferon secretion in glomerular endothelial cells via retinoic acid-inducible gene (RIG)-1. Nephrol. Dial. Transplant. 24, 3312–3318 (2009).

    Article  PubMed  CAS  Google Scholar 

  83. Hägele, H. et al. Double-stranded DNA activates glomerular endothelial cells and enhances albumin permeability via a toll-like receptor-independent cytosolic DNA recognition pathway. Am. J. Pathol. 175, 1896–1904 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Peterson, K. S. et al. Characterization of heterogeneity in the molecular pathogenesis of lupus nephritis from transcriptional profiles of laser-captured glomeruli. J. Clin. Invest. 113, 1722–1733 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rozzo, S. J. et al. Evidence for an interferon-inducible gene, Ifi202, in the susceptibility to systemic lupus. Immunity 15, 435–443 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Grimley, P. M. et al. Tubuloreticular inclusions in peripheral blood mononuclear cells related to systemic therapy with alpha-interferon. Lab. Invest. 52, 638–649 (1985).

    CAS  PubMed  Google Scholar 

  87. Strauss, J. et al. Renal disease in children with the acquired immunodeficiency syndrome. N. Engl. J. Med. 321, 625–630 (1989).

    Article  CAS  PubMed  Google Scholar 

  88. Rich, S. A. Human lupus inclusions and interferon. Science 213, 772–775 (1981).

    Article  CAS  PubMed  Google Scholar 

  89. Anders, H. J., Lichtnekert, J. & Allam, R. Interferon-α and -β in kidney inflammation. Kidney Int. 77, 848–854 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Yang, A. H. et al. The clinicopathological implications of endothelial tubuloreticular inclusions found in glomeruli having histopathology of idiopathic membranous nephropathy. Nephrol. Dial. Transplant. 24, 3419–3425 (2009).

    Article  PubMed  Google Scholar 

  91. Lafyatis, R., York, M. & Marshak-Rothstein, A. Antimalarial agents: closing the gate on Toll-like receptors? Arthritis Rheum. 54, 3068–3070 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Pons-Estel, G. J. et al. Protective effect of hydroxychloroquine on renal damage in patients with lupus nephritis: LXV, data from a multiethnic US cohort. Arthritis Rheum. 61, 830–839 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Guiducci, C. et al. TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus. Nature 465, 937–941 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pawar, R. D. et al. Inhibition of Toll-like receptor-7 (TLR-7) or TLR-7 plus TLR-9 attenuates glomerulonephritis and lung injury in experimental lupus. J. Am. Soc. Nephrol. 18, 1721–1731 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Barrat, F. J., Meeker, T., Chan, J. H., Guiducci, C. & Coffman, R. L. Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms. Eur. J. Immunol. 37, 3582–3586 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Yao, Y. et al. Neutralization of interferon-α/β-inducible genes and downstream effect in a phase I trial of an anti-interferon-α monoclonal antibody in systemic lupus erythematosus. Arthritis Rheum. 60, 1785–1796 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A. Migliorini is a graduate of the Deutsche Forschungsgemeinschaft Graduate College 1202. H.-J. Anders is supported by the Deutsche Forschungsgemeinschaft via AN372/9-2, 10-1, and 11-1.

Author information

Authors and Affiliations

Authors

Contributions

A. Migliorini and H.-J. Anders contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Hans-Joachim Anders.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Migliorini, A., Anders, HJ. A novel pathogenetic concept—antiviral immunity in lupus nephritis. Nat Rev Nephrol 8, 183–189 (2012). https://doi.org/10.1038/nrneph.2011.197

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2011.197

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing