Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathogenic cellular and molecular mediators in lupus nephritis

Abstract

Kidney involvement in patients with systemic lupus erythematosus — lupus nephritis (LN) — is one of the most important and common clinical manifestations of this disease and occurs in 40–60% of patients. Current treatment regimens achieve a complete kidney response in only a minority of affected individuals, and 10–15% of patients with LN develop kidney failure, with its attendant morbidity and considerable prognostic implications. Moreover, the medications most often used to treat LN — corticosteroids in combination with immunosuppressive or cytotoxic drugs — are associated with substantial side effects. Advances in proteomics, flow cytometry and RNA sequencing have led to important new insights into immune cells, molecules and mechanistic pathways that are instrumental in the pathogenesis of LN. These insights, together with a renewed focus on the study of human LN kidney tissue, suggest new therapeutic targets that are already being tested in lupus animal models and early-phase clinical trials and, as such, are hoped to eventually lead to meaningful improvements in the care of patients with systemic lupus erythematosus-associated kidney disease.

Key points

  • Understanding of the cellular and molecular mechanisms underlying lupus nephritis (LN) is progressing rapidly, facilitated by new tools for advanced ‘omic’ analyses.

  • Increasingly fine immune cell profiling based on patterns of expression of cell surface markers and genes is defining T cell and macrophage subsets that are important in disease mechanisms.

  • Chromatin release and/or its ineffective clearance stimulate adaptive and innate immunity in LN.

  • Resident kidney cells, including podocytes, mesangial cells and tubular epithelial cells, participate actively in the pathology of LN.

  • Closer attention to technical aspects in trial design is driving successes in clinical trials in systemic lupus erythematosus and stimulating much additional interest in the rational design and application of novel LN therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathogenic consequences of immunostimulatory DNA in systemic lupus erythematosus and lupus nephritis.
Fig. 2: Sources of immunostimulatory DNA in systemic lupus erythematosus and lupus nephritis.
Fig. 3: Overview of pathogenic mechanisms in LN and potential therapeutic targets.

Similar content being viewed by others

References

  1. Parikh, S. V., Almaani, S., Brodsky, S. & Rovin, B. H. Update on lupus nephritis: core curriculum 2020. Am. J. Kidney Dis. 76, 265–281 (2020).

    Article  PubMed  Google Scholar 

  2. Hocaoglu, M. et al. Incidence, prevalence, and mortality of lupus nephritis: a population-based study over four decades — The Lupus Midwest Network (LUMEN). Arthritis Rheumatol. 75, 567–573 (2022).

    Article  Google Scholar 

  3. Davidson, A. What is damaging the kidney in lupus nephritis? Nat. Rev. Rheumatol. 12, 143–153 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Lech, M. & Anders, H. J. The pathogenesis of lupus nephritis. J. Am. Soc. Nephrol. 24, 1357–1366 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mohan, C. & Putterman, C. Genetics and pathogenesis of systemic lupus erythematosus and lupus nephritis. Nat. Rev. Nephrol. 11, 329–341 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Wright, R. D., Dimou, P., Northey, S. J. & Beresford, M. W. Mesangial cells are key contributors to the fibrotic damage seen in the lupus nephritis glomerulus. J. Inflamm. 16, 22 (2019).

    Article  Google Scholar 

  7. Kitching, A. R. & Hickey, M. J. Immune cell behaviour and dynamics in the kidney — insights from in vivo imaging. Nat. Rev. Nephrol. 18, 22–37 (2022).

    Article  PubMed  Google Scholar 

  8. Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Der, E. et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat. Immunol. 20, 915–927 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fava, A. et al. Integrated urine proteomics and renal single-cell genomics identify an IFN-γ response gradient in lupus nephritis. JCI Insight 5, e138345 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen, Z. et al. A single-cell survey of the human glomerulonephritis. J. Cell Mol. Med. 25, 4684–4695 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Der, E. et al. Single cell RNA sequencing to dissect the molecular heterogeneity in lupus nephritis. JCI Insight 2, e93009 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vanarsa, K. et al. Quantitative planar array screen of 1000 proteins uncovers novel urinary protein biomarkers of lupus nephritis. Ann. Rheum. Dis. 79, 1349–1361 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Stanley, S. et al. Comprehensive aptamer-based screening identifies a spectrum of urinary biomarkers of lupus nephritis across ethnicities. Nat. Commun. 11, 2197 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stanley, S. et al. Identification of low-abundance urinary biomarkers in lupus nephritis using electrochemiluminescence immunoassays. Arthritis Rheumatol. 71, 744–755 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Fava, A. et al. Urine proteomics and renal single‐cell transcriptomics implicate interleukin‐16 in lupus nephritis. Arthritis Rheumatol. 74, 829–839 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bertolo, M. et al. Deep phenotyping of urinary leukocytes by mass cytometry reveals a leukocyte signature for early and non-invasive prediction of response to treatment in active lupus nephritis. Front. Immunol. 11, 256 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dhingra, S., Qureshi, R., Abdellatif, A., Gaber, L. W. & Truong, L. D. Tubulointerstitial nephritis in systemic lupus erythematosus: innocent bystander or ominous presage. Histol. Histopathol. 29, 553–565 (2014).

    PubMed  Google Scholar 

  19. Clark, M. R., Trotter, K. & Chang, A. The pathogenesis and therapeutic implications of tubulointerstitial inflammation in human lupus nephritis. Semin. Nephrol. 35, 455–464 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Obrișcă B, J. R. et al. Histological predictors of renal outcome in lupus nephritis: the importance of tubulointerstitial lesions and scoring of glomerular lesions. Lupus 27, 1455–1463 (2018).

    Article  PubMed  Google Scholar 

  21. Tilstra, J. S. et al. Kidney-infiltrating T cells in murine lupus nephritis are metabolically and functionally exhausted. J. Clin. Invest. 128, 4884–4897 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Winchester, R. et al. Immunologic characteristics of intrarenal T cells: trafficking of expanded CD8+ T cell β-chain clonotypes in progressive lupus nephritis. Arthritis Rheum. 64, 1589–1600 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Linke, A., Tiegs, G. & Neumann, K. Pathogenic T-cell responses in immune-mediated glomerulonephritis. Cells 11, 1625 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Smita, S., Chikina, M., Shlomchik, M. J. & Tilstra, J. S. Heterogeneity and clonality of kidney-infiltrating T cells in murine lupus nephritis. JCI Insight 7, e156048 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen, P. M. & Tsokos, G. C. The role of CD8+ T-cell systemic lupus erythematosus pathogenesis: an update. Curr. Opin. Rheumatol. 33, 586–591 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Couzi, L. et al. Predominance of CD8+ T lymphocytes among periglomerular infiltrating cells and link to the prognosis of class III and class IV lupus nephritis. Arthritis Rheum. 56, 2362–2370 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, T. et al. Association between tubulointerstitial CD8+ T cells and renal prognosis in lupus nephritis. Int. Immunopharmacol. 99, 107877 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Wiechmann, A. et al. CD107a+ (LAMP-1) cytotoxic CD8+ T-cells in lupus nephritis patients. Front. Med. 8, 556776 (2021).

    Article  Google Scholar 

  29. Li, L. et al. Targeting tissue-resident memory CD8+ T cells in the kidney is a potential therapeutic strategy to ameliorate podocyte injury and glomerulosclerosis. Mol. Ther. 30, 2746–2759 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Zhou, M. et al. JAK/STAT signaling controls the fate of CD8+CD103+ tissue-resident memory T cell in lupus nephritis. J. Autoimmun. 109, 102424 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Zhong, H. et al. TGF-beta-Induced CD8+CD103+ regulatory T cells show potent therapeutic effect on chronic graft-versus-host disease lupus by suppressing B cells. Front. Immunol. 9, 35 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang, H., Lan, L., Chen, J., Xiao, L. & Han, F. Peripheral blood T-cell subset and its clinical significance in lupus nephritis patients. Lupus Sci. Med 9, e000717 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Okamoto, A., Fujio, K., Tsuno, N. H., Takahashi, K. & Yamamoto, K. Kidney-infiltrating CD4+ T-cell clones promote nephritis in lupus-prone mice. Kidney Int. 82, 969–979 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Masutani, K. et al. Predominance of Th1 immune response in diffuse proliferative lupus nephritis. Arthritis Rheum. 44, 2097–2106 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Mesquita, D. Jr et al. CD4+ T helper cells and regulatory T cells in active lupus nephritis: an imbalance towards a predominant Th1 response? Clin. Exp. Immunol. 191, 50–59 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Fakhfakh, R. et al. Th17 and Th1 cells in systemic lupus erythematosus with focus on lupus nephritis. Immunol. Res. 70, 644–653 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Paquissi, F. C. & Abensur, H. The Th17/IL-17 Axis and kidney diseases, with focus on lupus nephritis. Front. Med. 8, 654912 (2021).

    Article  Google Scholar 

  38. Chen, D. Y. et al. The potential role of Th17 cells and Th17-related cytokines in the pathogenesis of lupus nephritis. Lupus 21, 1385–1396 (2012).

    Article  PubMed  Google Scholar 

  39. Shenoy, S. et al. Effect of induction therapy on circulating T-helper 17 and T-regulatory cells in active proliferative lupus nephritis. Int. J. Rheum. Dis. 21, 1040–1048 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Koga, T., Ichinose, K. & Tsokos, G. C. T cells and IL-17 in lupus nephritis. Clin. Immunol. 185, 95–99 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Pisitkun, P. et al. Interleukin-17 cytokines are critical in development of fatal lupus glomerulonephritis. Immunity 37, 1104–1115 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schmidt, T. et al. Function of the Th17/interleukin-17A immune response in murine lupus nephritis. Arthritis Rheumatol. 67, 475–487 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Li, Y., Tang, D., Yin, L. & Dai, Y. New insights for regulatory T cell in lupus nephritis. Autoimmun. Rev. 21, 103134 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Rose, A. et al. IL-2 Therapy diminishes renal inflammation and the activity of kidney-infiltrating CD4+ T cells in murine lupus nephritis. Cells 8, 1234 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xie, J. H. et al. Mouse IL-2/CD25 fusion protein induces regulatory T cell expansion and immune suppression in preclinical models of systemic lupus erythematosus. J. Immunol. 207, 34–43 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Yan, J. J. et al. IL-2/anti-IL-2 complexes ameliorate lupus nephritis by expansion of CD4+CD25+Foxp3+ regulatory T cells. Kidney Int. 91, 603–615 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Donadei, C. et al. Erythropoietin inhibits SGK1-dependent TH17 induction and TH17-dependent kidney disease. JCI Insight 5, e127428 (2019).

    Article  PubMed  Google Scholar 

  48. Gensous, N., Schmitt, N., Richez, C., Ueno, H. & Blanco, P. T follicular helper cells, interleukin-21 and systemic lupus erythematosus. Rheumatology 56, 516–523 (2017).

    CAS  PubMed  Google Scholar 

  49. Liarski, V. M. et al. Cell distance mapping identifies functional T follicular helper cells in inflamed human renal tissue. Sci. Transl. Med. 6, 230ra246 (2014).

    Article  Google Scholar 

  50. Sitrin, J. et al. The Ox40/Ox40 ligand pathway promotes pathogenic Th cell responses, plasmablast accumulation, and lupus nephritis in NZB/W F1 mice. J. Immunol. 199, 1238–1249 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cortini, A. et al. B cell OX40L supports T follicular helper cell development and contributes to SLE pathogenesis. Ann. Rheum. Dis. 76, 2095–2103 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Mountz, J. D., Hsu, H. C. & Ballesteros-Tato, A. Dysregulation of T follicular helper cells in lupus. J. Immunol. 202, 1649–1658 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Zhang X, L. E. et al. Circulating CXCR5+CD4+ helper T cells in systemic lupus erythematosus patients share phenotypic properties with germinal center follicular helper T cells and promote antibody production. Lupus 24, 909–917 (2015).

    Article  PubMed  Google Scholar 

  54. Choi, J. Y. et al. Disruption of pathogenic cellular networks by IL-21 blockade leads to disease amelioration in murine lupus. J. Immunol. 198, 2578–2588 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Miao, M. et al. Therapeutic potential of targeting Tfr/Tfh cell balance by low-dose-IL-2 in active SLE: a post hoc analysis from a double-blind RCT study. Arthritis Res. Ther. 23, 167 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xu, B. et al. The ratio of circulating follicular T helper cell to follicular T regulatory cell is correlated with disease activity in systemic lupus erythematosus. Clin. Immunol. 183, 46–53 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kumar, P. et al. Restoration of follicular T regulatory/helper cell balance by OX40L-JAG1 cotreatment suppresses lupus nephritis in NZBWF1/j mice. J. Immunol. 208, 2467–2481 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Liang, K. et al. Sustained low-dose interleukin-2 therapy alleviates pathogenic humoral immunity via elevating the Tfr/Tfh ratio in lupus. Clin. Transl. Immunol. 10, e1293 (2021).

    Article  CAS  Google Scholar 

  59. Rubtsova, K. et al. B cells expressing the transcription factor T-bet drive lupus-like autoimmunity. J. Clin. Invest. 127, 1392–1404 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liu, Y. et al. T-bet+CD11c+ B cells are critical for antichromatin immunoglobulin G production in the development of lupus. Arthritis Res. Ther. 19, 225 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wang, S. et al. IL-21 drives expansion and plasma cell differentiation of autoreactive CD11chiT-bet+ B cells in SLE. Nat. Commun. 9, 1758 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ramskold, D. et al. B cell alterations during BAFF inhibition with belimumab in SLE. EBioMedicine 40, 517–527 (2019).

    Article  PubMed  Google Scholar 

  63. Zhang, W. et al. Excessive CD11c+Tbet+ B cells promote aberrant TFH differentiation and affinity-based germinal center selection in lupus. Proc. Natl Acad. Sci. USA 116, 18550–18560 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Du, S. W., Arkatkar, T., Jacobs, H. M., Rawlings, D. J. & Jackson, S. W. Generation of functional murine CD11c+ age-associated B cells in the absence of B cell T-bet expression. Eur. J. Immunol. 49, 170–178 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Karnell, J. L. et al. Role of CD11c+ T-bet+ B cells in human health and disease. Cell Immunol. 321, 40–45 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. You, X. et al. Double negative B cell is associated with renal impairment in systemic lupus erythematosus and acts as a marker for nephritis remission. Front. Med. 7, 85 (2020).

    Article  Google Scholar 

  67. Espeli, M. et al. Local renal autoantibody production in lupus nephritis. J. Am. Soc. Nephrol. 22, 296–305 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kinloch, A. J. et al. Vimentin is a dominant target of in situ humoral immunity in human lupus tubulointerstitial nephritis. Arthritis Rheumatol. 66, 3359–3370 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Abraham, R. et al. Specific in situ inflammatory states associate with progression to renal failure in lupus nephritis. J. Clin. Invest 132, e155350 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Becker, M., Gnirck, A. C. & Turner, J. E. Innate lymphoid cells in renal inflammation. Front. Immunol. 11, 72 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Park, Y. W. et al. Impaired differentiation and cytotoxicity of natural killer cells in systemic lupus erythematosus. Arthritis Rheum. 60, 1753–1763 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Hudspeth, K. et al. Natural killer cell expression of Ki67 is associated with elevated serum IL-15, disease activity and nephritis in systemic lupus erythematosus. Clin. Exp. Immunol. 196, 226–236 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Scheffschick, A., Fuchs, S., Malmstrom, V., Gunnarsson, I. & Brauner, H. Kidney infiltrating NK cells and NK-like T-cells in lupus nephritis: presence, localization, and the effect of immunosuppressive treatment. Clin. Exp. Immunol. 207, 199–204 (2022).

    Article  PubMed  Google Scholar 

  74. Spada, R. et al. NKG2D ligand overexpression in lupus nephritis correlates with increased NK cell activity and differentiation in kidneys but not in the periphery. J. Leukoc. Biol. 97, 583–598 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Duster, M. et al. T cell-derived IFN-γ downregulates protective group 2 innate lymphoid cells in murine lupus erythematosus. Eur. J. Immunol. 48, 1364–1375 (2018).

    Article  PubMed  Google Scholar 

  76. Jourde-Chiche, N. et al. Modular transcriptional repertoire analyses identify a blood neutrophil signature as a candidate biomarker for lupus nephritis. Rheumatology 56, 477–487 (2017).

    CAS  PubMed  Google Scholar 

  77. Banchereau, R. et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 165, 551–565 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nishi, H. & Mayadas, T. N. Neutrophils in lupus nephritis. Curr. Opin. Rheumatol. 31, 193–200 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Nishi, H. et al. Neutrophil FcγRIIA promotes IgG-mediated glomerular neutrophil capture via Abl/Src kinases. J. Clin. Invest. 127, 3810–3826 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Skopelja-Gardner, S. et al. Acute skin exposure to ultraviolet light triggers neutrophil-mediated kidney inflammation. Proc. Natl Acad. Sci. USA 118, e2019097118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fousert, E., Toes, R. & Desai, J. Neutrophil extracellular traps (NETs) take the central stage in driving autoimmune responses. Cells 9, 915 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. van der Linden, M. et al. Neutrophil extracellular trap release is associated with antinuclear antibodies in systemic lupus erythematosus and anti-phospholipid syndrome. Rheumatology 57, 1228–1234 (2018).

    Article  PubMed  Google Scholar 

  83. Hakkim, A. et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl Acad. Sci. USA 107, 9813–9818 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tay, S. H., Celhar, T. & Fairhurst, A. M. Low-density neutrophils in systemic lupus erythematosus. Arthritis Rheumatol. 72, 1587–1595 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Moore, S. et al. Neutrophil extracellular traps identify patients at risk of increased disease activity and cardiovascular comorbidity in systemic lupus erythematosus. J. Rheumatol. 47, 190875 (2019).

    Google Scholar 

  86. Frangou, E. et al. REDD1/autophagy pathway promotes thromboinflammation and fibrosis in human systemic lupus erythematosus (SLE) through NETs decorated with tissue factor (TF) and interleukin-17A (IL-17A). Ann. Rheum. Dis. 78, 238–248 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Fortner, K. A. et al. Targeting mitochondrial oxidative stress with MitoQ reduces NET formation and kidney disease in lupus-prone MRL-lpr mice. Lupus Sci. Med. 7, e000387 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Goel, R. R. & Kaplan, M. J. Deadliest catch: neutrophil extracellular traps in autoimmunity. Curr. Opin. Rheumatol. 32, 64–70 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Villanueva, E. et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J. Immunol. 187, 538–552 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Campbell, A. M., Kashgarian, M. & Shlomchik, M. J. NADPH oxidase inhibits the pathogenesis of systemic lupus erythematosus. Sci. Transl. Med. 4, 157ra141 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kienhofer, D. et al. Experimental lupus is aggravated in mouse strains with impaired induction of neutrophil extracellular traps. JCI Insight 2, e92920 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Gordon, R. A. et al. Lupus and proliferative nephritis are PAD4 independent in murine models. JCI Insight 2, e92926 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Gordon, R. A. et al. Murine lupus is neutrophil elastase-independent in the MRL.Faslpr model. PLoS One 15, e0226396 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Maria, N. I. & Davidson, A. Renal macrophages and dendritic cells in SLE nephritis. Curr. Rheumatol. Rep. 19, 81 (2017).

    Article  PubMed  Google Scholar 

  95. Mysore, V. et al. Monocytes transition to macrophages within the inflamed vasculature via monocyte CCR2 and endothelial TNFR2. J. Exp. Med. 219, e20210562 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Maria, N. I. & Davidson, A. Protecting the kidney in systemic lupus erythematosus: from diagnosis to therapy. Nat. Rev. Rheumatol. 16, 255–267 (2020).

    Article  PubMed  Google Scholar 

  97. Sahu, R., Bethunaickan, R., Singh, S. & Davidson, A. Structure and function of renal macrophages and dendritic cells from lupus-prone mice. Arthritis Rheumatol. 66, 1596–1607 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Stamatiades, E. G. et al. Immune monitoring of trans-endothelial transport by kidney-resident macrophages. Cell 166, 991–1003 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Richoz, N. et al. Distinct pathogenic roles for resident and monocyte-derived macrophages in lupus nephritis. JCI Insight 7, e159751 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Barrera Garcia, A. et al. Infiltrating CD16+ are associated with a reduction in peripheral CD14+CD16++ monocytes and severe forms of lupus nephritis. Autoimmune Dis. 2016, 9324315 (2016).

    PubMed  PubMed Central  Google Scholar 

  101. Nakatani, K. et al. Fractalkine expression and CD16+ monocyte accumulation in glomerular lesions: association with their severity and diversity in lupus models. Am. J. Physiol. Renal Physiol. 299, F207–F216 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Yoshimoto, S. et al. Elevated levels of fractalkine expression and accumulation of CD16+ monocytes in glomeruli of active lupus nephritis. Am. J. Kidney Dis. 50, 47–58 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Olaru, F. et al. Intracapillary immune complexes recruit and activate slan-expressing CD16+ monocytes in human lupus nephritis. JCI Insight 3, e96492 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Davidson, A. Renal mononuclear phagocytes in lupus nephritis. ACR Open Rheumatol. 3, 442–450 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Schiffer L, B. R. et al. Activated renal macrophages are markers of disease onset and disease remission in lupus nephritis. J. Immunol. 180, 1938–1947 (2008).

    Article  PubMed  Google Scholar 

  106. Bethunaickan, R. et al. A unique hybrid renal mononuclear phagocyte activation phenotype in murine systemic lupus erythematosus nephritis. J. Immunol. 186, 4994–5003 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Kuriakose, J. et al. Patrolling monocytes promote the pathogenesis of early lupus-like glomerulonephritis. J. Clin. Invest. 129, 2251–2265 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Dias, C. B. et al. Role of renal expression of CD68 in the long-term prognosis of proliferative lupus nephritis. J. Nephrol. 30, 87–94 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tang, P. M., Nikolic-Paterson, D. J. & Lan, H. Y. Macrophages: versatile players in renal inflammation and fibrosis. Nat. Rev. Nephrol. 15, 144–158 (2019).

    Article  PubMed  Google Scholar 

  111. Orme, J. M. C. Macrophage subpopulations in systemic lupus erythematosus. Discov. Med. 13, 151–158 (2012).

    PubMed  Google Scholar 

  112. Iwata, Y. et al. Aberrant macrophages mediate defective kidney repair that triggers nephritis in lupus-susceptible mice. J. Immunol. 188, 4568–4580 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Kwant, L. E. et al. Macrophages in lupus nephritis: exploring a potential new therapeutic avenue. Autoimmun. Rev. 21, 103211 (2022).

    Article  CAS  PubMed  Google Scholar 

  114. Olmes, G. et al. CD163+ M2c-like macrophages predominate in renal biopsies from patients with lupus nephritis. Arthritis Res. Ther. 18, 90 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Kishimoto, D. et al. Dysregulated heme oxygenase-1low M2-like macrophages augment lupus nephritis via Bach1 induced by type I interferons. Arthritis Res. Ther. 20, 64 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Zhang, T. et al. Association of urine sCD163 with proliferative lupus nephritis, fibrinoid necrosis, cellular crescents and intrarenal M2 macrophages. Front. Immunol. 11, 671 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Mejia-Vilet, J. M. et al. Urinary soluble CD163: a novel noninvasive biomarker of activity for lupus nephritis. J. Am. Soc. Nephrol. 31, 1335–1347 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sciascia, S. et al. Renal fibrosis in lupus nephritis. Int J. Mol. Sci. 23, 14317 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chalmers, S. A. et al. Macrophage depletion ameliorates nephritis induced by pathogenic antibodies. J. Autoimmun. 57, 42–52 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Chalmers, S. A. et al. CSF-1R inhibition attenuates renal and neuropsychiatric disease in murine lupus. Clin. Immunol. 185, 100–108 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Chalmers, S. A., Garcia, S. J., Reynolds, J. A., Herlitz, L. & Putterman, C. NF-κB signaling in myeloid cells mediates the pathogenesis of immune-mediated nephritis. J. Autoimmun. 98, 33–43 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hu, L. et al. Interleukin-22 from type 3 innate lymphoid cells aggravates lupus nephritis by promoting macrophage infiltration in lupus-prone mice. Front. Immunol. 12, 584414 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Arazi, A. et al. Immune cell heterogeneity in lupus nephritis kidneys and its relation to histopathological features [abstract]. Arthritis Rheumatol. 74 (suppl. 9), abstr 640 (2022).

  124. Hoover, P. et al. Differentiation of injury-associated macrophages in lupus kidneys is conserved in humans and lupus mouse models [abstract]. Arthritis Rheumatol. 74, (suppl. 9), abstr 1666 (2022).

  125. Kurts, C., Ginhoux, F. & Panzer, U. Kidney dendritic cells: fundamental biology and functional roles in health and disease. Nat. Rev. Nephrol. 16, 391–407 (2020).

    Article  PubMed  Google Scholar 

  126. Wardowska, A., Komorniczak, M., Bullo-Piontecka, B., Debska-Slizien, M. A. & Pikula, M. Transcriptomic and epigenetic alterations in dendritic cells correspond with chronic kidney disease in lupus nephritis. Front. Immunol. 10, 2026 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tucci, M. et al. Glomerular accumulation of plasmacytoid dendritic cells in active lupus nephritis: role of interleukin-18. Arthritis Rheum. 58, 251–262 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Liao, X. et al. Renal-infiltrating CD11c+ cells are pathogenic in murine lupus nephritis through promoting CD4+ T cell responses. Clin. Exp. Immunol. 190, 187–200 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Castellano, G. et al. Infiltrating dendritic cells contribute to local synthesis of C1q in murine and human lupus nephritis. Mol. Immunol. 47, 2129–2137 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Parikh, S. V. et al. A novel inflammatory dendritic cell that is abundant and contiguous to T cells in the kidneys of patients with lupus nephritis. Front. Immunol. 12, 621039 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chang, A. et al. In situ B cell-mediated immune responses and tubulointerstitial inflammation in human lupus nephritis. J. Immunol. 186, 1849–1860 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Dorraji, E. S. et al. Kidney tertiary lymphoid structures in lupus nephritis develop into large interconnected networks and resemble lymph nodes in gene signature. Am. J. Pathol. 190, 2203–2225 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Jamaly, S., Rakaee, M., Abdi, R., Tsokos, G. C. & Fenton, K. A. Interplay of immune and kidney resident cells in the formation of tertiary lymphoid structures in lupus nephritis. Autoimmun. Rev. 20, 102980 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. Steinmetz, O. M. et al. Analysis and classification of B-cell infiltrates in lupus and ANCA-associated nephritis. Kidney Int. 74, 448–457 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Yoshikawa, T., Lee, Y. H., Sato, Y. & Yanagita, M. Tertiary lymphoid tissues in kidney diseases: a perspective for the pediatric nephrologist. Pediatr. Nephrol. 38, 1399–1409 (2022).

    Article  PubMed  Google Scholar 

  136. Kang, S. et al. BAFF induces tertiary lymphoid structures and positions T cells within the glomeruli during lupus nephritis. J. Immunol. 198, 2602–2611 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Dorraji, S. E. et al. Mesenchymal stem cells and T cells in the formation of tertiary lymphoid structures in lupus nephritis. Sci. Rep. 8, 7861 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Bhargava, R., Li, H. & Tsokos, G. C. Pathogenesis of lupus nephritis: the contribution of immune and kidney resident cells. Curr. Opin. Rheumatol. 35, 107–116 (2023).

    Article  CAS  PubMed  Google Scholar 

  139. Bhargava, R. & Tsokos, G. C. The immune podocyte. Curr. Opin. Rheumatol. 31, 167–174 (2019).

    Article  PubMed  Google Scholar 

  140. Sakhi, H. et al. Podocyte injury in lupus nephritis. J. Clin. Med. 8, 1340 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wright, R. D. & Beresford, M. W. Podocytes contribute, and respond, to the inflammatory environment in lupus nephritis. Am. J. Physiol. Renal Physiol. 315, F1683–F1694 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Goldwich, A. et al. Podocytes are nonhematopoietic professional antigen-presenting cells. J. Am. Soc. Nephrol. 24, 906–916 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang, Y., Yu, F., Song, D., Wang, S. X. & Zhao, M. H. Podocyte involvement in lupus nephritis based on the 2003 ISN/RPS system: a large cohort study from a single centre. Rheumatology 53, 1235–1244 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Rezende, G. M. et al. Podocyte injury in pure membranous and proliferative lupus nephritis: distinct underlying mechanisms of proteinuria? Lupus 23, 255–262 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Bruschi, M. et al. Glomerular autoimmune multicomponents of human lupus nephritis in vivo (2): planted antigens. J. Am. Soc. Nephrol. 26, 1905–1924 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Fu, R. et al. Podocyte activation of NLRP3 inflammasomes contributes to the development of proteinuria in lupus nephritis. Arthritis Rheumatol. 69, 1636–1646 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Maeda, K. et al. CaMK4 compromises podocyte function in autoimmune and nonautoimmune kidney disease. J. Clin. Invest. 128, 3445–3459 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Nowling, T. K. Mesangial cells in lupus nephritis. Curr. Rheumatol. Rep. 23, 83 (2022).

    Article  PubMed  Google Scholar 

  149. Yu, H. et al. Mesangial cells exhibit features of antigen-presenting cells and activate CD4+ T cell responses. J. Immunol. Res. 2019, 2121849 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Han, X. et al. MicroRNA-130b ameliorates murine lupus nephritis through targeting the type I interferon pathway on renal mesangial cells. Arthritis Rheumatol. 68, 2232–2243 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Ichinose, K. et al. Cutting edge: calcium/calmodulin-dependent protein kinase type IV is essential for mesangial cell proliferation and lupus nephritis. J. Immunol. 187, 5500–5504 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Ferretti, A. P., Bhargava, R., Dahan, S., Tsokos, M. G. & Tsokos, G. C. Calcium/calmodulin kinase IV controls the function of both T cells and kidney resident cells. Front. Immunol. 9, 2113 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Hong, S., Healy, H. & Kassianos, A. J. The emerging role of renal tubular epithelial cells in the immunological pathophysiology of lupus nephritis. Front. Immunol. 11, 578952 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Breda PC, W. T. et al. Renal proximal tubular epithelial cells exert immunomodulatory function by driving inflammatory CD4+ T cell responses. Am. J. Physiol. Renal Physiol. 317, F77–F89 (2019).

    Article  PubMed  Google Scholar 

  155. Linke, A. et al. Antigen cross-presentation by murine proximal tubular epithelial cells induces cytotoxic and inflammatory CD8+ T cells. Cells 11, 1510 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Li H, T. M. et al. IL-23 reshapes kidney resident cell metabolism and promotes local kidney inflammation. J. Clin. Invest. 131, e142428 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Chasset, F. & Arnaud, L. Targeting interferons and their pathways in systemic lupus erythematosus. Autoimmun. Rev. 17, 44–52 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Mustelin, T., Lood, C. & Giltiay, N. V. Sources of pathogenic nucleic acids in systemic lupus erythematosus. Front. Immunol. 10, 1028 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Arriens C, R. Q. et al. Increased risk of progression to lupus nephritis for lupus patients with elevated interferon signature [abstract]. Arthritis Rheumatol. 71 abstr 1914 (2019).

  160. Crow, M. K., Olferiev, M. & Kirou, K. A. Targeting of type I interferon in systemic autoimmune diseases. Transl. Res. 165, 296–305 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Iwamoto, T. et al. High systemic type I interferon activity is associated with active class III/IV lupus nephritis. J. Rheumatol. 49, 388–397 (2022).

    Article  CAS  PubMed  Google Scholar 

  162. Zickert, A. et al. Interferon (IFN)-λ is a potential mediator in lupus nephritis. Lupus Sci. Med. 3, e000170 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Oke, V. et al. High levels of circulating interferons type I, type II and type III associate with distinct clinical features of active systemic lupus erythematosus. Arthritis Res. Ther. 21, 107 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Oke, V. et al. IFN-λ1 with Th17 axis cytokines and IFN-α define different subsets in systemic lupus erythematosus (SLE). Arthritis Res. Ther. 19, 139 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Psarras, A. et al. Functionally impaired plasmacytoid dendritic cells and non-haematopoietic sources of type I interferon characterize human autoimmunity. Nat. Commun. 11, 6149 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lindau, D. et al. TLR9 independent interferon α production by neutrophils on NETosis in response to circulating chromatin, a key lupus autoantigen. Ann. Rheum. Dis. 73, 2199–2207 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Fairhurst, A. M. et al. Type I interferons produced by resident renal cells may promote end-organ disease in autoantibody-mediated glomerulonephritis. J. Immunol. 183, 6831–6838 (2009).

    Article  CAS  PubMed  Google Scholar 

  168. Castellano, G. et al. Local synthesis of interferon-α in lupus nephritis is associated with type I interferons signature and LMP7 induction in renal tubular epithelial cells. Arthritis Res. Ther. 17, 72 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Kalunian, K. C. et al. A phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-α) in patients with systemic lupus erythematosus (ROSE). Ann. Rheum. Dis. 75, 196–202 (2016).

    Article  PubMed  Google Scholar 

  170. Khamashta, M. et al. Sifalimumab, an anti-interferon-α monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study. Ann. Rheum. Dis. 75, 1909–1916 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Morand, E. F. et al. Trial of anifrolumab in active systemic lupus erythematosus. N. Engl. J. Med. 382, 211–221 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Houssiau, F. A. et al. IFN-α kinoid in systemic lupus erythematosus: results from a phase IIb, randomised, placebo-controlled study. Ann. Rheum. Dis. 79, 347–355 (2020).

    Article  CAS  PubMed  Google Scholar 

  173. Chaichian, Y., Wallace, D. J. & Weisman, M. H. A promising approach to targeting type 1 IFN in systemic lupus erythematosus. J. Clin. Invest. 129, 958–961 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Furie, R. et al. Monoclonal antibody targeting BDCA2 ameliorates skin lesions in systemic lupus erythematosus. J. Clin. Invest. 129, 1359–1371 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Chyuan, I. T., Tzeng, H. T. & Chen, J. Y. Signaling pathways of type I and type III interferons and targeted therapies in systemic lupus erythematosus. Cells 8, 963 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Tanaka, Y. & Tummala, R. Anifrolumab, a monoclonal antibody to the type I interferon receptor subunit 1, for the treatment of systemic lupus erythematosus: an overview from clinical trials. Mod. Rheumatol. 31, 1–12 (2021).

    Article  CAS  PubMed  Google Scholar 

  177. Mullard, A. FDA approves AstraZeneca’s anifrolumab for lupus. Nat. Rev. Drug Discov. 20, 658 (2021).

    PubMed  Google Scholar 

  178. Jayne, D. et al. Phase II randomised trial of type I interferon inhibitor anifrolumab in patients with active lupus nephritis. Ann. Rheum. Dis. 81, 496–506 (2022).

    Article  CAS  PubMed  Google Scholar 

  179. Barrat, F. J., Elkon, K. B. & Fitzgerald, K. A. Importance of nucleic acid recognition in inflammation and autoimmunity. Annu. Rev. Med. 67, 323–336 (2016).

    Article  CAS  PubMed  Google Scholar 

  180. Lorenz, G., Lech, M. & Anders, H. J. Toll-like receptor activation in the pathogenesis of lupus nephritis. Clin. Immunol. 185, 86–94 (2017).

    Article  CAS  PubMed  Google Scholar 

  181. Rubtsova K, M. P. & Rubtsov, A. V. TLR7, IFNγ, and T-bet: their roles in the development of ABCs in female-biased autoimmunity. Cell Immunol. 294, 80–83 (2015).

    Article  PubMed  Google Scholar 

  182. Gong, L. et al. Activation of toll-like receptor-7 exacerbates lupus nephritis by modulating regulatory T cells. Am. J. Nephrol. 40, 325–344 (2014).

    Article  CAS  PubMed  Google Scholar 

  183. Wirth, J. R., Molano, I., Ruiz, P., Coutermarsh-Ott, S. & Cunningham, M. A. TLR7 agonism accelerates disease and causes a fatal myeloproliferative disorder in NZM 2410 lupus mice. Front. Immunol. 10, 3054 (2019).

    Article  CAS  PubMed  Google Scholar 

  184. Brown, G. J. et al. TLR7 gain-of-function genetic variation causes human lupus. Nature 605, 349–356 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wang, T. et al. High TLR7 expression drives the expansion of CD19+CD24hiCD38hi transitional B cells and autoantibody production in SLE patients. Front. Immunol. 10, 1243 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Souyris M, C. C. et al. TLR7 escapes X chromosome inactivation in immune cells. Sci. Immunol. 3, eaap8855 (2018).

    Article  PubMed  Google Scholar 

  187. Fairhurst, A. M. et al. Yaa autoimmune phenotypes are conferred by overexpression of TLR7. Eur. J. Immunol. 38, 1971–1978 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Christensen, S. R. et al. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25, 417–428 (2006).

    Article  CAS  PubMed  Google Scholar 

  189. Gies, V. et al. Impaired TLR9 responses in B cells from patients with systemic lupus erythematosus. JCI Insight 3, e96795 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Sharma, S., Fitzgerald, K. A., Cancro, M. P. & Marshak-Rothstein, A. Nucleic acid-sensing receptors: rheostats of autoimmunity and autoinflammation. J. Immunol. 195, 3507–3512 (2015).

    Article  CAS  PubMed  Google Scholar 

  191. Jackson, S. W. et al. Opposing impact of B cell-intrinsic TLR7 and TLR9 signals on autoantibody repertoire and systemic inflammation. J. Immunol. 192, 4525–4532 (2014).

    Article  CAS  PubMed  Google Scholar 

  192. Bossaller, L. et al. TLR9 deficiency leads to accelerated renal disease and myeloid lineage abnormalities in pristane-induced murine lupus. J. Immunol. 197, 1044–1053 (2016).

    Article  CAS  PubMed  Google Scholar 

  193. Rubtsov AV, R. K., Kappler, J. W. & Marrack, P. TLR7 drives accumulation of ABCs and autoantibody production in autoimmune-prone mice. Immunol. Res. 55, 210–216 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Chauhan, S. K., Singh, V. V., Rai, R., Rai, M. & Rai, G. Distinct autoantibody profiles in systemic lupus erythematosus patients are selectively associated with TLR7 and TLR9 upregulation. J. Clin. Immunol. 33, 954–964 (2013).

    Article  CAS  PubMed  Google Scholar 

  195. Lyn-Cook, B. D. et al. Increased expression of Toll-like receptors (TLRs) 7 and 9 and other cytokines in systemic lupus erythematosus (SLE) patients: ethnic differences and potential new targets for therapeutic drugs. Mol. Immunol. 61, 38–43 (2014).

    Article  CAS  PubMed  Google Scholar 

  196. Crow, M. K. Autoimmunity: interferon α or β: which is the culprit in autoimmune disease? Nat. Rev. Rheumatol. 12, 439–440 (2016).

    Article  CAS  PubMed  Google Scholar 

  197. Buskiewicz IA, M. T. et al. Reactive oxygen species induce virus-independent MAVS oligomerization in systemic lupus erythematosus. Sci. Signal. 9, ra115 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Wang, J. et al. Association of abnormal elevations in IFIT3 with overactive cyclic GMP-AMP synthase/stimulator of interferon genes signaling in human systemic lupus erythematosus monocytes. Arthritis Rheumatol. 70, 2036–2045 (2018).

    Article  CAS  PubMed  Google Scholar 

  199. Shao, W. H. et al. Prion-like aggregation of mitochondrial antiviral signaling protein in lupus patients is associated with increased levels of type I interferon. Arthritis Rheumatol. 68, 2697–2707 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Sun, W. et al. Antiviral adaptor MAVS promotes murine lupus with a B cell autonomous role. Front. Immunol. 10, 2452 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. An, J. et al. Expression of cyclic GMP-AMP synthase in patients with systemic lupus erythematosus. Arthritis Rheumatol. 69, 800–807 (2017).

    Article  CAS  PubMed  Google Scholar 

  202. Konig, N. et al. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann. Rheum. Dis. 76, 468–472 (2017).

    Article  PubMed  Google Scholar 

  203. Jeremiah, N. et al. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J. Clin. Invest. 124, 5516–5520 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Decout, A., Katz, J. D., Venkatraman, S. & Ablasser, A. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 21, 548–569 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Klarquist, J. et al. STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells. J. Immunol. 193, 6124–6134 (2014).

    Article  CAS  PubMed  Google Scholar 

  206. Sharma, S. et al. Suppression of systemic autoimmunity by the innate immune adaptor STING. Proc. Natl Acad. Sci. USA 112, E710–E717 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Motwani, M. et al. cGAS-STING Pathway does not promote autoimmunity in murine models of SLE. Front. Immunol. 12, 605930 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Skopelja-Gardner, S., An, J. & Elkon, K. B. Role of the cGAS-STING pathway in systemic and organ-specific diseases. Nat. Rev. Nephrol. 18, 558–572 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Zang, N. et al. cGAS-STING activation contributes to podocyte injury in diabetic kidney disease. iScience 25, 105145 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Yiu, W. H., Lin, M. & Tang, S. C. Toll-like receptor activation: from renal inflammation to fibrosis. Kidney Int. Suppl. 4, 20–25 (2014).

    Article  CAS  Google Scholar 

  211. Mohan C, A. S., Stanik, V. & Datta, S. K. Nucleosome: a major immunogen for pathogenic autoantibody-inducing T cells of lupus. J. Exp. Med. 177, 1367–1381 (1993).

    Article  PubMed  Google Scholar 

  212. Lovgren, T., Eloranta, M. L., Bave, U., Alm, G. V. & Ronnblom, L. Induction of interferon-α production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum. 50, 1861–1872 (2004).

    Article  PubMed  Google Scholar 

  213. Vorobjeva, N. V. & Chernyak, B. V. NETosis: molecular mechanisms, role in physiology and pathology. Biochemistry 85, 1178–1190 (2020).

    CAS  PubMed  Google Scholar 

  214. Sorensen, O. E. & Borregaard, N. Neutrophil extracellular traps — the dark side of neutrophils. J. Clin. Invest. 126, 1612–1620 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Garcia-Romo, G. S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra20 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Soni, C. & Reizis, B. Self-DNA at the epicenter of SLE: immunogenic forms, regulation, and effects. Front. Immunol. 10, 1601 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Wigerblad, G. & Kaplan, M. J. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-022-00787-0 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Georgakis, S. et al. NETs decorated with bioactive IL-33 infiltrate inflamed tissues and induce IFN-α production in patients with SLE. JCI Insight 6, e147671 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Tang, D., Chen, X., Kang, R. & Kroemer, G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 31, 107–125 (2021).

    Article  CAS  PubMed  Google Scholar 

  220. Li, P. et al. Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity. Nat. Immunol. 22, 1107–1117 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Alli, A. A. et al. Kidney tubular epithelial cell ferroptosis links glomerular injury to tubulointerstitial pathology in lupus nephritis. Clin. Immunol. 248, 109213 (2022).

    Article  PubMed  Google Scholar 

  222. Linge, P., Fortin, P. R., Lood, C., Bengtsson, A. A. & Boilard, E. The non-haemostatic role of platelets in systemic lupus erythematosus. Nat. Rev. Rheumatol. 14, 195–213 (2018).

    Article  CAS  PubMed  Google Scholar 

  223. Melki I, A. I. et al. Platelets release mitochondrial antigens in systemic lupus erythematosus. Sci. Transl. Med. 13, eaav5928 (2021).

    Article  PubMed  Google Scholar 

  224. Caielli, S. et al. Erythroid mitochondrial retention triggers myeloid-dependent type I interferon in human SLE. Cell 184, 4464–4479 e4419 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Frangou, E., Vassilopoulos, D., Boletis, J. & Boumpas, D. T. An emerging role of neutrophils and NETosis in chronic inflammation and fibrosis in systemic lupus erythematosus (SLE) and ANCA-associated vasculitides (AAV): implications for the pathogenesis and treatment. Autoimmun. Rev. 18, 751–760 (2019).

    Article  CAS  PubMed  Google Scholar 

  226. Lood, C. et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 22, 146–153 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Wang, H., Li, T., Chen, S., Gu, Y. & Ye, S. Neutrophil extracellular trap mitochondrial DNA and its autoantibody in systemic lupus erythematosus and a proof-of-concept trial of metformin. Arthritis Rheumatol. 67, 3190–3200 (2015).

    Article  CAS  PubMed  Google Scholar 

  228. Blanco, L. P. et al. Improved mitochondrial metabolism and reduced inflammation following attenuation of murine lupus with coenzyme Q10 analog idebenone. Arthritis Rheumatol. 72, 454–464 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Kim, J. et al. VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. Science 366, 1531–1536 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Fortin, P. R. et al. Distinct subtypes of microparticle-containing immune complexes are associated with disease activity, damage, and carotid intima-media thickness in systemic lupus erythematosus. J. Rheumatol. 43, 2019–2025 (2016).

    Article  CAS  PubMed  Google Scholar 

  231. Lopez, P., Rodriguez-Carrio, J., Martinez-Zapico, A., Caminal-Montero, L. & Suarez, A. Circulating microparticle subpopulations in systemic lupus erythematosus are affected by disease activity. Int. J. Cardiol. 236, 138–144 (2017).

    Article  PubMed  Google Scholar 

  232. Dieker, J. et al. Circulating apoptotic microparticles in systemic lupus erythematosus patients drive the activation of dendritic cell subsets and prime neutrophils for NETosis. Arthritis Rheumatol. 68, 462–472 (2016).

    Article  CAS  PubMed  Google Scholar 

  233. Mobarrez, F. et al. Microparticles in the blood of patients with systemic lupus erythematosus (SLE): phenotypic characterization and clinical associations. Sci. Rep. 6, 36025 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Nielsen, C. T., Ostergaard, O., Johnsen, C., Jacobsen, S. & Heegaard, N. H. Distinct features of circulating microparticles and their relationship to clinical manifestations in systemic lupus erythematosus. Arthritis Rheum. 63, 3067–3077 (2011).

    Article  PubMed  Google Scholar 

  235. Rother, N., Pieterse, E., Lubbers, J., Hilbrands, L. & van der Vlag, J. Acetylated histones in apoptotic microparticles drive the formation of neutrophil extracellular traps in active lupus nephritis. Front. Immunol. 8, 1136 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Arneth, B. Systemic lupus erythematosus and DNA degradation and elimination defects. Front. Immunol. 10, 1697 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Leffler, J. et al. Degradation of neutrophil extracellular traps co-varies with disease activity in patients with systemic lupus erythematosus. Arthritis Res. Ther. 15, R84 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Monteith, A. J. et al. Defects in lysosomal maturation facilitate the activation of innate sensors in systemic lupus erythematosus. Proc. Natl Acad. Sci. USA 113, E2142–E2151 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Zhou, Y. et al. Cathepsin K deficiency ameliorates systemic lupus erythematosus-like manifestations in Faslpr mice. J. Immunol. 198, 1846–1854 (2017).

    Article  CAS  PubMed  Google Scholar 

  240. Bonam, S. R., Wang, F. & Muller, S. Lysosomes as a therapeutic target. Nat. Rev. Drug Discov. 18, 923–948 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Sisirak, V. et al. Digestion of chromatin in apoptotic cell microparticles prevents autoimmunity. Cell 166, 88–101 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Soni, C. et al. Plasmacytoid dendritic cells and type I interferon promote extrafollicular B cell responses to extracellular self-DNA. Immunity 52, 1022–1038.e1027 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Wang, X. & Xia, Y. Anti-double stranded DNA antibodies: origin, pathogenicity, and targeted therapies. Front. Immunol. 10, 1667 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Pisetsky, D. S., Garza Reyna, A., Belina, M. E. & Spencer, D. M. The interaction of anti-DNA antibodies with DNA: evidence for unconventional binding mechanisms. Int. J. Mol. Sci. 23, 5227 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Rekvig, O. P. The anti-DNA antibodies: their specificities for unique DNA structures and their unresolved clinical impact — a system criticism and a hypothesis. Front. Immunol. 12, 808008 (2021).

    Article  CAS  PubMed  Google Scholar 

  246. Pisetsky, D. S. & Lipsky, P. E. New insights into the role of antinuclear antibodies in systemic lupus erythematosus. Nat. Rev. Rheumatol. 16, 565–579 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Putterman, C. New approaches to the renal pathogenicity of anti-DNA antibodies in systemic lupus erythematosus. Autoimmun. Rev. 3, 7–11 (2004).

    Article  CAS  PubMed  Google Scholar 

  248. Xia, Y., Janda, A., Eryilmaz, E., Casadevall, A. & Putterman, C. The constant region affects antigen binding of antibodies to DNA by altering secondary structure. Mol. Immunol. 56, 28–37 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Xia, Y., Eryilmaz, E., Zhang, Q., Cowburn, D. & Putterman, C. Anti-DNA antibody mediated catalysis is isotype dependent. Mol. Immunol. 69, 33–43 (2016).

    Article  CAS  PubMed  Google Scholar 

  250. Deocharan B, Q. X., Beger, E. & Putterman, C. Antigenic triggers and molecular targets for anti-double-stranded DNA antibodies. Lupus 11, 865–871 (2002).

    Article  PubMed  Google Scholar 

  251. Shang, X. et al. Anti-dsDNA, anti-nucleosome, anti-C1q, and anti-histone antibodies as markers of active lupus nephritis and systemic lupus erythematosus disease activity. Immun. Inflamm. Dis. 9, 407–418 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Choi, M. Y., FitzPatrick, R. D., Buhler, K., Mahler, M. & Fritzler, M. J. A review and meta-analysis of anti-ribosomal P autoantibodies in systemic lupus erythematosus. Autoimmun. Rev. 19, 102463 (2020).

    Article  CAS  PubMed  Google Scholar 

  253. Dumestre-Perard, C., Clavarino, G., Colliard, S., Cesbron, J. Y. & Thielens, N. M. Antibodies targeting circulating protective molecules in lupus nephritis: interest as serological biomarkers. Autoimmun. Rev. 17, 890–899 (2018).

    Article  CAS  PubMed  Google Scholar 

  254. Lewis, M. J. et al. Autoantibodies targeting TLR and SMAD pathways define new subgroups in systemic lupus erythematosus. J. Autoimmun. 91, 1–12 (2018).

    Article  CAS  PubMed  Google Scholar 

  255. Cantarelli, C., Leventhal, J. & Cravedi, P. Complement in lupus: biomarker, therapeutic target, or a little bit of both? Kidney Int. Rep. 6, 2031–2032 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Obrisca, B., Sorohan, B., Tuta, L. & Ismail, G. Advances in lupus nephritis pathogenesis: from bench to bedside. Int. J. Mol. Sci. 22, 3766 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Satyam, A., Hisada, R., Bhargava, R., Tsokos, M. G. & Tsokos, G. C. Intertwined pathways of complement activation command the pathogenesis of lupus nephritis. Transl. Res. 245, 18–29 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Putterman, C. et al. Cell-bound complement activation products in systemic lupus erythematosus: comparison with anti-double-stranded DNA and standard complement measurements. Lupus Sci. Med. 1, e000056 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Wright, R. D., Bannerman, F., Beresford, M. W. & Oni, L. A systematic review of the role of eculizumab in systemic lupus erythematosus-associated thrombotic microangiopathy. BMC Nephrol. 21, 245 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Lee, A. Avacopan: first approval. Drugs 82, 79–85 (2021).

    Article  Google Scholar 

  261. Li, N. L., Birmingham, D. J. & Rovin, B. H. Expanding the role of complement therapies: the case for lupus nephritis. J. Clin. Med. 10, 626 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Kostopoulou, M., Pitsigavdaki, S. & Bertsias, G. Lupus nephritis: improving treatment options. Drugs 82, 735–748 (2022).

    Article  CAS  PubMed  Google Scholar 

  263. Yap, D. Y. H. & Mok, C. C. Novel and emerging treatment strategies for lupus nephritis. Expert. Rev. Clin. Pharmacol. 15, 1283–1292 (2022).

    Article  CAS  PubMed  Google Scholar 

  264. Clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT05138133 (2021).

  265. Zhao, Z. et al. TWEAK/Fn14 interactions are instrumental in the pathogenesis of nephritis in the chronic graft-versus-host model of systemic lupus erythematosus. J. Immunol. 179, 7949–7958 (2007).

    Article  CAS  PubMed  Google Scholar 

  266. Michaelson, J. S., Wisniacki, N., Burkly, L. C. & Putterman, C. Role of TWEAK in lupus nephritis: a bench-to-bedside review. J. Autoimmun. 39, 130–142 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Xia, Y. et al. Inhibition of the TWEAK/Fn14 pathway attenuates renal disease in nephrotoxic serum nephritis. Clin. Immunol. 145, 108–121 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Xia, Y. et al. Deficiency of fibroblast growth factor-inducible 14 (Fn14) preserves the filtration barrier and ameliorates lupus nephritis. J. Am. Soc. Nephrol. 26, 1053–1070 (2015).

    Article  CAS  PubMed  Google Scholar 

  269. Dias, R., Hasparyk, U. G., Lopes, M. P., de Barros, J. & Simoes, E. S. A. C. Novel biomarkers for lupus nephritis in the “OMICS” era. Curr. Med. Chem. 28, 6011–6044 (2021).

    Article  CAS  PubMed  Google Scholar 

  270. Palazzo, L., Lindblom, J., Mohan, C. & Parodis, I. Current insights on biomarkers in lupus nephritis: a systematic review of the literature. J. Clin. Med. 11, 5759 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Bolouri, N. et al. Role of the innate and adaptive immune responses in the pathogenesis of systemic lupus erythematosus. Inflamm. Res. 71, 537–554 (2022).

    Article  CAS  PubMed  Google Scholar 

  272. Radin, M. et al. Prognostic and diagnostic values of novel serum and urine biomarkers in lupus nephritis: a systematic review. Am. J. Nephrol. 52, 559–571 (2021).

    Article  CAS  PubMed  Google Scholar 

  273. Ghafouri-Fard, S., Shahir, M., Taheri, M. & Salimi, A. A review on the role of chemokines in the pathogenesis of systemic lupus erythematosus. Cytokine 146, 155640 (2021).

    Article  CAS  PubMed  Google Scholar 

  274. Hayry, A. et al. Interleukin (IL) 16: a candidate urinary biomarker for proliferative lupus nephritis. Lupus Sci. Med. 9, e000744 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Niewold, T. B. et al. Proteome study of cutaneous lupus erythematosus (CLE) and dermatomyositis skin lesions reveals IL-16 is differentially upregulated in CLE. Arthritis Res. Ther. 23, 132 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Xie, S., Louis Sam Titus, A. S. C. & Mohan, C. Elevated expression of receptors for EGF, PDGF, transferrin and folate within murine and human lupus nephritis kidneys. Clin. Immunol. 246, 109188 (2023).

    Article  CAS  PubMed  Google Scholar 

  277. Lei, R. et al. A novel technology for home monitoring of lupus nephritis that tracks the pathogenic urine biomarker ALCAM. Front. Immunol. 13, 1044743 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Song, K., Liu, L., Zhang, X. & Chen, X. An update on genetic susceptibility in lupus nephritis. Clin. Immunol. 210, 108272 (2020).

    Article  CAS  PubMed  Google Scholar 

  279. Lorenzo-Vizcaya, A. & Isenberg, D. A. Clinical trials in systemic lupus erythematosus: the dilemma — why have phase III trials failed to confirm the promising results of phase II trials? Ann. Rheum. Dis. 82, 169–174 (2023).

    Article  CAS  PubMed  Google Scholar 

  280. Isenberg, D. A. & Merrill, J. T. Why, why, why de-lupus (does so badly in clinical trials). Expert. Rev. Clin. Immunol. 12, 95–98 (2016).

    Article  CAS  PubMed  Google Scholar 

  281. Hruskova, Z. & Tesar, V. Lessons learned from the failure of several recent trials with biologic treatment in systemic lupus erythematosus. Expert. Opin. Biol. Ther. 18, 989–996 (2018).

    Article  CAS  PubMed  Google Scholar 

  282. Rovin, B. H. et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 64, 1215–1226 (2012).

    Article  CAS  PubMed  Google Scholar 

  283. Krustev, E., Clarke, A. E. & Barber, M. R. W. B cell depletion and inhibition in systemic lupus erythematosus. Expert. Rev. Clin. Immunol. 19, 55–70 (2023).

    Article  CAS  PubMed  Google Scholar 

  284. Mackensen, A. et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 28, 2124–2132 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content and wrote, reviewed or edited the manuscript before submission.

Corresponding authors

Correspondence to Chandra Mohan or Chaim Putterman.

Ethics declarations

Competing interests

C.P. is one of the holders of a patent describing the diagnostic use of urinary TWEAK in lupus nephritis (Method of treating lupus nephritis; Grant US-9730947-B2). C.M. and C.P. serve as scientific consultants to Equillium, which is developing anti-CD6 as a therapy for lupus nephritis. The other author declares no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks T. Chan, O. Steinmetz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, C., Zhang, T. & Putterman, C. Pathogenic cellular and molecular mediators in lupus nephritis. Nat Rev Nephrol 19, 491–508 (2023). https://doi.org/10.1038/s41581-023-00722-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00722-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing