Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Under the sea: microbial life in volcanic oceanic crust

Abstract

Exploration of the microbiology in igneous, 'hard rock' oceanic crust represents a major scientific frontier. The igneous crust harbours the largest aquifer system on Earth, most of which is hydrologically active, resulting in a substantial exchange of fluids, chemicals and microorganisms between oceanic basins and crustal reservoirs. Study of the deep-subsurface biosphere in the igneous crust is technically challenging. However, technologies have improved over the past decade, providing exciting new opportunities for the study of deep-seated marine life, including in situ and cross-disciplinary experimentation in microbiology, geochemistry and hydrogeology. In this Progress article, we describe the recent advances, available technology and remaining challenges in the study of the marine intraterrestrial microbial life that is harboured in igneous oceanic crust.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location of CORKed borehole observatories, schematics of subsurface fluid circulation and venting crustal fluids.
Figure 2: Community structure in the deep ocean and deep biosphere, demonstrating that subsurface crustal bacteria are distinct from the bacteria in other deep-sea environments.
Figure 3: Experimental approaches for studying the sub-seafloor microbiome, as used for seafloor83,84 and sub-seafloor microbiological experiments68,85.
Figure 4: CORK observatory systems for studying the igneous oceanic crust experimentally and manipulatively.

Similar content being viewed by others

References

  1. ZoBell, C. E. & Morita, R. Y. Barophilic bacteria in some deep sea sediments. J. Bacteriol. 73, 563–568 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. ZoBell, C. E. Studies on the bacterial flora of marine bottom sediments. J. Sediment. Res. A Sediment. Petrol. Process. 8, 10–18 (1938).

    CAS  Google Scholar 

  3. ZoBell, C. E. & Anderson, Q. A. Vertical distribution of bacteria in marine sediments. Am. Assoc. Pet. Geol. Bull. 20, 258–269 (1936).

    Google Scholar 

  4. Barr, N. F. & Allen, A. O. Hydrogen atoms in the radiolysis of water. J. Phys. Chem. 63, 928–931 (1959).

    Article  CAS  Google Scholar 

  5. D'Hondt, S. et al. Subseafloor sedimentary life in the South Pacific gyre. Proc. Natl Acad. Sci. USA 106, 11651–11656 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Corliss, J. B. et al. Submarine thermal springs on the Galapogos Rift. Science 203, 1073–1083 (1979).

    Article  CAS  PubMed  Google Scholar 

  7. Fournier, R. O. Geochemistry and dynamics of the Yellowstone National Park hydrothermal system. Annu. Rev. Earth Planet. Sci. 17, 13–53 (1989).

    Article  CAS  Google Scholar 

  8. Haymond, R. M. et al. Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9°45–52′N: direct submersible observations of seafloor phenomena associated with an eruption event in April 1991. Earth Planet. Sci. Lett. 119, 85–101 (1993).

    Article  Google Scholar 

  9. Huber, J. A., Johnson, H. P., Butterfield, D. A. & Baross, J. A. Microbial life in ridge flank crustal fluids. Environ. Microbiol. 8, 88–99 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Santelli, C. M. et al. Abundance and diversity of microbial life in ocean crust. Nature 453, 653–657 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Mason, O. U. et al. First investigation of the microbiology of the deepest layer of ocean crust. PLoS ONE 5, e15399 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Cowen, J. et al. Fluids from aging ocean crust that support microbial life. Science 299, 120–123 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Fisk, M. R., Giovannoni, S. J. & Thoreth, I. H. Alteration of oceanic volcanic glass: textural evidence of microbial activity. Science 281, 978–980 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Staudigel, H. et al. 3.5 billion years of glass bioalteration: volcanic rocks as a basis for microbial life? Earth Sci. Rev. 89, 156–176 (2008).

    Article  CAS  Google Scholar 

  15. Schrenk, M. O., Huber, J. A. & Edwards, K. J. Microbial provinces in the subseafloor. Oceanography 2, 85–110 (2009).

    Google Scholar 

  16. Orcutt, B. N., Sylvan, J. B., Knab, N. J. & Edwards, K. J. Microbial ecology of the dark ocean above, at and below the seafloor. Microbiol. Mol. Biol. Rev. 75, 361–422 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Johnson, H. P. & Priuis, M. J. Fluxes of fluid and heat from the oceanic crustal resevoir. Earth Planet. Sci. Lett. 216, 565–574 (2003).

    Article  CAS  Google Scholar 

  18. Wheat, C. G., McManus, J., Mottl, M. J. & Giambalvo, E. Oceanic phosphorous imbalance: magnitude of the mid-ocean ridge flank hydrothermal sink. Geophys. Res. Lett. 30, 1895 (2003).

    Article  CAS  Google Scholar 

  19. Mackenzie, F. T. in Encyclopedia of Earth System Science Vol. 1 (eds Nierenberg, W. A. et al.) 431–445 (Academic, New York, 1992).

    Google Scholar 

  20. Sclater, J. G., Jaupert, C. & Galson, D. The heat flow through oceanic and continental crust and the heat loss of the earth. Rev. Geophys. 18, 269–311 (1980).

    Article  Google Scholar 

  21. Stein, C. A. & Stein, S. Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J. Geophys. Res. 99, 3081–3095 (1994).

    Article  Google Scholar 

  22. Fisher, A. & Wheat, C. G. Seamounts as conduits for massive fluid, heat, and solute fluxes on ridge flanks. Oceanography 23, 74–87 (2010).

    Article  Google Scholar 

  23. Maris, C. R., Bender, M. L., Froelich, P. N., Barnes, R. O. & Luedtke, N. A. Chemical evidence for advection of hydrothermal solutions in the sediments of the Galapogos Mounds hydrothermal field. Geochim. Cosmochim. Acta 48, 2331–2346 (1984).

    Article  CAS  Google Scholar 

  24. Edwards, K. J., Bach, W. & McCollom, T. M. Geomicrobiology in oceanography: mineral–microbe interactions at and below the seafloor. Trends Microbiol. 13, 449–459 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. German, C. R. & Von Damm, K. L. in Treatise on Geochemistry Vol. 6 (ed. Elderfield, H.) 181–222 (Elsevier, 2003).

    Book  Google Scholar 

  26. Hannington, M. D., Jonasson, I. R., Herzig, P. M., Petersen, S. & Herzig, P. M. in Seafloor Hydrothermal Systems Vol. 91 (eds Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S. & Thomson, R. E.) 115–157 (American Geophysical Union, Washington DC, 1995).

    Google Scholar 

  27. Kelley, D. S. A serpentinite-hosted ecosystem: the lost city hydrothermal field. Science 307, 1428–1434 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Maris, C. R. & Bender, M. L. Upwelling of hydrothermal solution through ridge flank sediments shown by porewater profiles. Science 216, 623–626 (1982).

    Article  CAS  PubMed  Google Scholar 

  29. Wessel, P., Sandwell, D. T. & Kim, S.-S. The global seamount census. Oceanography 23, 24–33 (2010).

    Article  Google Scholar 

  30. Wheat, C. G. & Fisher, A. T. Massive, low-temperature hydrothermal flow from a basaltic outcrop on 23 Ma seafloor of the Cocos Plate: chemical constraints and implications. Geochem. Geophys. Geosyst. 9, Q12O14 (2008).

    Google Scholar 

  31. Wheat, C. G., Elderfield, H., Mottl, M. J. & Monnin, C. Chemical composition of basement fluids within an oceanic ridge flank: implications for along-strike and across-strike hydrothermal circulation. J. Geophys. Res. 105, 13437–13447 (2000).

    Article  CAS  Google Scholar 

  32. Fisher, A. T. & Becker, K. Channelized fluid flow in oceanic crust reconciles heat-flow and permeability data. Nature 403, 71–74 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Bach, W. & Edwards, K. J. Iron and sulfide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim. Cosmochim. Acta 67, 3871–3887 (2003).

    Article  CAS  Google Scholar 

  34. Tryon, M. D., Wheat, C. G. & Hilton, D. R. Fluid sources and pathways of the Costa Rica erosional convergent margin. Geochem. Geophys. Geosyst. 11, Q04S22 (2010).

    Google Scholar 

  35. Thorseth, I. H. et al. Diversity of life in ocean floor basalt. Earth Planet. Sci. Lett. 194, 31–37 (2001).

    Article  CAS  Google Scholar 

  36. Furnes, H., Muehlenbachs, K., Torsvik, T., Thorseth, I. H. & Tumyr, O. Microbial fractionation of carbon isotopes in altered basaltic glass from the Atlantic Ocean, Lau Basin and Costa Rica Rift. Chem. Geol. 173, 313–330 (2001).

    Article  CAS  Google Scholar 

  37. Lysnes, K. et al. Microbial community diversity in seafloor basalt from the Arctic spreading ridges. FEMS Microbiol. Ecol. 50, 213–230 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Emerson, D. et al. A novel lineage of Proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities. PLoS ONE 2, e677 (2007).

    Article  CAS  Google Scholar 

  39. Edwards, K. J., Bach, W., McCollom, T. M. & Rogers, D. R. Neutrophilic iron-oxidizing bacteria in the ocean: their habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea. Geomicrobiol. J. 21, 393–404 (2004).

    Article  CAS  Google Scholar 

  40. Edwards, K. J., Rogers, D. R., Wirsen, C. O. & McCollom, T. M. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic α- and γ-Proteobacteria from the deep sea. Appl. Environ. Microbiol. 69, 2906–2913 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Templeton, A. S. et al. A seafloor microbial biome hosted within incipient ferromanganese crusts. Nature Geosci. 2, 872–876 (2009).

    Article  CAS  Google Scholar 

  42. Chan, C. S., Fakra, S. C., Emerson, D., Fleming, E. J. & Edwards, K. J. Lithotrophic iron-oxidizing bacteria produce organic stalks to control iron mineral growth; implications for biosignature formation. ISME J. 5, 717–727 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Alt, J. C. Hydrothermal oxide and nontronite deposits on seamounts in the eastern Pacific. Mar. Geol. 81, 227–239 (1988).

    Article  CAS  Google Scholar 

  44. Emerson, D. & Moyer, C. L. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition. Appl. Environ. Microbiol. 68, 3085–3093 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Edwards, K. J. et al. Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000m off Hawaii. ISME J. 5 May 2011 (doi: 10.1038/ismej.2011.48).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Emerson, D. & Moyer, C. L. Microbiology of seamounts: common patterns observed in community structure. Oceanography 23, 5148–5163 (2010).

    Article  Google Scholar 

  47. Templeton, A. S., Studigel, H. & Tebo, B. M. Diverse Mn(II)-oxidizing bacteria isolated from submarine basalts at Loihi Seamount. Geomicrobiol. J. 22, 127–139 (2005).

    Article  CAS  Google Scholar 

  48. Gao, H. et al. Shewanella loihica sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean. Int. J. Syst. Evol. Microbiol. 56, 1911–1916 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Mason, O. U. et al. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts. ISME J. 2, 231–242 (2009).

    Article  CAS  Google Scholar 

  50. Santelli, C. M., Edgcomb, V. P., Bach, W. & Edwards, K. J. The diversity and abundance of bacteria inhabiting seafloor lavas positively correlate with rock alteration. Environ. Microbiol. 11, 86–98 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Mason, O. U. et al. The phylogeny of endolithic microbes associated with marine basalts. Environ. Microbiol. 9, 2539–2550 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Einen, J., Thorseth, I. H. & Ovreas, L. Enumeration of Archaea and Bacteria in seafloor basalt using real-time quantitative PCR and fluorescence microscopy. FEMS Microbiol. Lett. 282, 182–187 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Deming, J. W. & Baross, J. A. Deep-sea smokers: windows to a subsurface biosphere? Geochim. Cosmochim. Acta 57, 3219–3230 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Summit, M. & Baross, J. A. A novel microbial habitat in the mid-ocean ridge subseafloor. Proc. Natl Acad. Sci. USA 98, 2158–2163 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huber, J. A., Butterfield, D. A. & Baross, J. A. Temporal changes in archaeal diversity and chemistry in a mid-ocean ridge subseafloor habitat. Appl. Environ. Microbiol. 68, 1585–1594 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huber, J. A., Butterfield, D. A. & Baross, J. A. Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. FEMS Microbiol. Ecol. 43, 393–409 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Davis, R. E., Stakes, D. S., Wheat, C. G. & Moyer, C. L. Bacterial variability within an iron-silica-manganese-rich hydrothermal mound located off-axis at the Cleft Segment, Juan de Fuca Ridge. Geomicrobiol. J. 26, 570–580 (2009).

    Article  CAS  Google Scholar 

  58. Rassa, A. C., McAllister, S. M., Safran, S. A. & Moyer, C. L. Zeta-Proteobacteria dominate the colonization and formation of microbial mats in low-temperature hydrothermal vents at Loihi Seamount, Hawaii. Geomicrobiol. J. 26, 623–628 (2009).

    Article  CAS  Google Scholar 

  59. Nakagawa, S. et al. Microbial community in black rust exposed to hot ridge flank crustal fluids. Appl. Environ. Microbiol. 72, 6789–6799 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gihring, T. M. et al. The distribution of microbial taxa in the subsurface water of the Kalahari Shield, South Africa. Geomicrobiol. J. 23, 415–430 (2006).

    Article  CAS  Google Scholar 

  61. Santelli, C. M., Bach, W., Banerjee, N. R. & Edwards, K. J. Tapping the subsurface ocean crust biosphere: low biomass and drilling-related contamination calls for improved quality controls. Geomicrobiol. J. 27, 158–169 (2010).

    Article  Google Scholar 

  62. Charlou, J. L., Donval, J. P., Fouquet, Y., Jean-Baptiste, P. & Holm, N. G. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). Chem. Geol. 191, 345–359 (2002).

    Article  CAS  Google Scholar 

  63. Charlou, J. L. et al. Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15°20′N fracture zone and the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 62, 2323–2333 (1998).

    Article  CAS  Google Scholar 

  64. Lang, S. Q., Butterfield, D. A., Schulte, M., Kelley, D. S. & Lilley, M. D. Elevated concentrations of formate, acetate, and dissolved organic carbon found at the Lost City hydrothermal field. Geochim. Cosmochim. Acta 74, 941–952 (2010).

    Article  CAS  Google Scholar 

  65. Baker, E. T. & German, C. R. in Mid-Ocean Ridges: Hydrothermal Interactions Between Lithosphere and Oceans Vol. 148 (eds German, C. R., Lin, J. & Parson, L. M.) 245–266 (American Geophysical Union, 2004).

    Google Scholar 

  66. Davis, E. E., Becker, K., Pettigrew, T. L., Carson, B. & Macdonald, R. CORK: a hydrological sea and downhole observatory for deep-ocean boreholes, in Proceedings of the Ocean Drilling Program, Initial Reports Vol. 139 (eds Davis, E. E. et al.) 43–53 (Ocean Drilling Program, College Station, 1992).

    Google Scholar 

  67. Fouquet, Y., Zierenberg, R. A. & Miller, D. J. (eds) Proceedings of the Ocean Drilling Program, Initial Reports Vol. 169 (Ocean Drilling Program, College Station, 1998).

    Book  Google Scholar 

  68. Orcutt, B. N. et al. Colonization of subsurface microbial observatories deployed in young ocean crust. ISME J. 5, 692–703 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Orcutt, B., Wheat, C. G. & Edwards, K. J. Subseafloor ocean crust microbial observatories: development of FLOCS (FLow-through Osmo Colonization System) and evaluation of borehole construction methods. Geomicrobiol. J. 27, 143–157 (2010).

    Article  Google Scholar 

  70. Wheat, C. G. et al. Fluid sampling from oceanic borehole observatories: design and methods for CORK activities (1990–2010), in Proceedings of the Integrated Ocean Drilling Program Expedition 327 (Integrated Ocean Drilling Program Management International, in the press).

  71. Fisher, A. T. et al. Design, deployment, and status of borehole observatory systems used for single-hole and cross-hole experiments, IODP Expedition 327, eastern flank of Juan de Fuca Ridge, in Proceedings of the Integrated Ocean Drilling Program Expedition 327 (Integrated Ocean Drilling Program Management International, in the press).

  72. Jannasch, H. W., Wheat, C. G., Plant, J. N., Kastner, M. & Stakes, D. S. Continuous chemical monitoring with osmotically pumped water samplers: OsmoSampler design and applications. Limnol. Oceangr. Methods 2, 2843–2856 (2004).

    Article  Google Scholar 

  73. Moore, T. S. et al. Marine chemical technolgy and sensors for marine waters: potentials and limits. Annu. Rev. Mar. Sci. 1, 91–115 (2009).

    Article  Google Scholar 

  74. Becker, K., Davis, E. E., Spiess, F. N. & deMoustier, C. P. Temperature and video logs from the upper oceanic crust, holes 504B and 896A, Costa Rica Rift flank: implications for the permeability of the upper oceanic crust. Earth Planet. Sci. Lett. 222, 881–896 (2004).

    Article  CAS  Google Scholar 

  75. Glazer, B. T. & Rouxel, O. Redox speciation and distribution within diverse iron-dominated habitats at Loihi Seamount. Geomicrobiol. J. 26, 606–622 (2009).

    Article  CAS  Google Scholar 

  76. Bhartia, R. et al. Label-free bacterial imaging with deep UV laser induced native fluorescence. Appl. Environ. Microbiol. 76, 7231–7237 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nakagawa, S. et al. Variability in microbial community and venting chemistry in a sediment-hosted backarc hydrothermal system: impacts of subseafloor phase-separation. FEMS Microbiol. Ecol. 54, 141–155 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Pham, V. D., Konstantinidis, K. T., Palden, T. & DeLong, E. F. Phylogenetic analyses of ribosomal DNA-containing bacterioplanton genome fragments from a 4000 m vertical profile in the North Pacific Subtropical Gyre. Environ. Microbiol. 10, 2313–2330 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Sudek, L. A., Templeton, A. S., Tebo, B. M. & Staudigel, H. Microbial ecology of Fe (hydr)oxide mats and basaltic rock from Vailulu'u Seamount, American Samoa. Geomicrobiol. J. 26, 581–596 (2009).

    Article  CAS  Google Scholar 

  82. Dick, G. J. & Tebo, B. M. Microbial diversity and biogeochemistry of the Guaymas Basin deep-sea hydrothermal plume. Environ. Microbiol. 12, 1334–1347 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Edwards, K. J., McCollom, T. M., Konishi, H. & Buseck, P. R. Seafloor bioalteration of sulfide minerals: results from in-situ incubation studies. Geochim. Cosmochim. Acta 67, 2843–2856 (2003).

    Article  CAS  Google Scholar 

  84. Toner, B. M. et al. Biogenic iron oxyhydroxide formation at mid-ocean ridge hydrothermal vents: Juan de Fuca Ridge. Geochim. Cosmochim. Acta 73, 388–403 (2009).

    Article  CAS  Google Scholar 

  85. Sylvan, J. B., Turner, A. G. & Edwards, K. J. in Microbial Metal and Metalloid Metabolism: Advances and Applications (eds Stolz, J. F. & Oremland, R. S.) 65–74 (American Society for Microbiology Press, Washington DC, 2011).

    Book  Google Scholar 

  86. Cowen, J. P. The microbial biosphere of sediment-buried oceanic basement. Res. Microbiol. 155, 497–506 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by funding from the US National Science Foundation (NSF) Ocean Drilling Program, Marine Geology and Geophysics Program, Microbial Observatories Program and Science and Technology Center Program, and from the Gordon and Betty Moore Foundation (K.J.E. and C.G.W.). This is the Center for Dark Energy Biosphere Investigations contribution #108.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Glossary

Basalt

A volcanic, extrusive silicate rock that makes up most of the upper igneous oceanic crust.

Basalt alteration

Chemical weathering and precipitation reactions that occur between seafloor and sub-seafloor basalts and sea water. Products include oxides, oxydroxides, clay minerals and carbonates.

Boreholes

Holes that are generated by drilling operations. Most holes are 'single-bit' holes into sediments, for which the hole is abandoned after core recovery. Some single-bit holes penetrate into igneous crust, and a select number of these are equipped with a re-entry cone at the sea floor to permit re-entry into the hole for multi-bit penetrations. Even fewer boreholes are kept open though the use of steel casing, allowing for future operations.

CORK

(Circulation obviation retrofit kit). A plug that seals the borehole at the sea floor, isolating the subsurface aquifers from exchange with sea water and permitting them to recover to pre-drilling conditions.

Crustal-dewatering reactions

Chemical reactions involving the dehydration of crust during the subduction of oceanic slabs into the mantel.

FLOCSs

(Flow-through osmo colonization systems). Modular experimental systems that are composed of a series of cassettes and an osmotic pump, and are designed to encourage colonization and growth in situ for study following sample recovery.

Igneous

Formed from the cooling and crystallization of a magma intrusion (for example, basalt is igneous).

Lithosphere

The rigid outer portion of the Earth, comprising crust and upper mantle. The lithosphere is dissected into plates that undergo motion (plate tectonics).

Mid-ocean ridge

A global locus of new crustal formation where heat from this crustal formation and seafloor spreading drives hydrothermal flow in the crust, thus cooling magmatic intrusions from the mantle.

Oceanic crust

The layer comprising the sediment and basaltic formations overlying the lithosphere; this layer is on average 5 km thick.

OsmoSamplers

Continuous fluid samplers that use osmotic membranes and a salt gradient across the membranes to drive fluid collection in small-bore (1 mm internal diameter) tubing. A range of pump and sample-coil configurations are possible, allowing samples to be acidified, enriched or preserved in situ.

Radiolysis of water

The dissociation of water by radiation to generate molecular hydrogen, which is an important fuel source for microorganisms.

Seamounts

Large exposed basalt features that extend for more than 1 km above the sea floor. Smaller basaltic features surrounded by sediment are considered outcrops and include much of the young oceanic crust that lacks appreciable sediment cover.

Scientific ocean drilling

Ocean drilling for scientific research has taken place through three programmes since 1966. The Deep Sea Drilling Project (DSDP) operated from 1966 to 1983, followed by the Ocean Drilling Program (ODP) until 2003, and now (until 2013) the Integrated Ocean Drilling Program (IODP) manages operations.

Stalks

Mineral structures that are formed by some microorganisms as by-products of metabolic reactions; stalks occur in a range of shapes and sizes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, K., Wheat, C. & Sylvan, J. Under the sea: microbial life in volcanic oceanic crust. Nat Rev Microbiol 9, 703–712 (2011). https://doi.org/10.1038/nrmicro2647

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2647

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology