Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Can better prescribing turn the tide of resistance?

Abstract

In the wake of concerns about the level of antibiotic resistance, governments worldwide are pressing for reduced antibiotic use, hoping thereby to reverse resistance trends. Is success likely? The evidence is mixed, and expectations should be tempered by the growing realization that many resistant bacteria are biologically fit, making them difficult to displace. If resistance is unlikely to be reduced significantly by changing prescription practices, how can clinicians outpace increased resistance, particularly when much of 'big pharma' is abandoning antibiotic development?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Resistance trends among bacteraemia isolates in Europe (1999–2002).
Figure 2: Macrolide prescribing trends and macrolide resistance trends in Streptococcus pyogenes in Finland.
Figure 3: Sulphonamide prescribing trends in the United Kingdom.

Similar content being viewed by others

References

  1. Ibrahim, E. H., Sherman, G., Ward, S., Fraser, V. J. & Kollef, M. H. The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 118, 146–155 (2000).

    Article  CAS  Google Scholar 

  2. Report of the Joint Committee on the Use of Antimicrobials in Animal Husbandry and Veterinary Medicine. (Her Majesty's Stationery Office, UK, 1969).

  3. House of Lords Select Committee on Science and Technology Seventh Report. Resistance to Antibiotics and other Antimicrobial Agents. (Her Majesty's Stationery Office, UK, 1998).

  4. UK Standing Medical Advisory Committee (SMAC). The Path of Least Resistance. (Department of Health, UK, 1998).

  5. WHO Global Strategy for Containment of Antimicrobial Resistance. (World Health Organization, Geneva, 2001).

  6. Opinion of the Scientific Steering Committee on Antimicrobial Resistance. (European Commission, 2003).

  7. Interagency Task Force on Antimicrobial Resistance. [online], (cited 20 Nov 2003), <http://www.cdc.gov/drugresistance/actionplan/html/index.htm> (2001).

  8. Livermore, D. M. Bacterial resistance: origins, epidemiology, and impact. Clin. Infect. Dis. 36, S11–S23 (2003).

    Article  CAS  Google Scholar 

  9. McCaig, L. F., Besser, R. E. & Hughes, J. M. Antimicrobial drug prescription in ambulatory care settings, United States, 1992–2000. Emerg. Infect. Dis. 9, 432–437 (2003).

    Article  Google Scholar 

  10. Livermore, D. M. et al. Trends in fluoroquinolone (ciprofloxacin) resistance among Enterobacteriaceae from bacteraemias in England and Wales, 1990–1999. Emerg. Infect. Dis. 8, 473–478 (2002).

    Article  CAS  Google Scholar 

  11. Fenton, K. A. et al. Ciprofloxacin resistance in Neisseria gonorrhoeae in England and Wales in 2002. Lancet 361, 1867–1869 (2003).

    Article  CAS  Google Scholar 

  12. Staphylococcus aureus with reduced susceptibility to vancomycin. CDR Weekly 12, 2–3 [online], (cited 20 Nov 2003), <http://www.hpa.org.uk/cdr/PDFfiles/2002/cdr2002.pdf> (17 May 2002).

  13. Alobwede, I. et al. CTX-M extended-spectrum β-lactamase arrives in the UK. J. Antimicrob. Chemother. 51, 470–471 (2003).

    Article  CAS  Google Scholar 

  14. Tysall, L. et al. IMP-1 carbapenemase detected in an Acinetobacter clinical isolate from the UK. J. Antimicrob. Chemother. 49, 217–218 (2002).

    Article  CAS  Google Scholar 

  15. Seppala, H. et al. The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland. Finnish study group for antimicrobial resistance. N. Engl. J. Med. 337, 441–446 (1997).

    Article  CAS  Google Scholar 

  16. Austin, D. J., Kristinsson, K. G. & Anderson, R. M. The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance. Proc. Natl Acad. Sci. USA 96, 1152–1156 (1999).

    Article  CAS  Google Scholar 

  17. Aarestrup, F. M. et al. Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicrob. Agents Chemother. 45, 2054–2059 (2001).

    Article  CAS  Google Scholar 

  18. Manninen, R., Huovinen, P. & Nissinen, A. Increasing antimicrobial resistance in Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis in Finland. J. Antimicrob. Chemother. 40, 387–392 (1997).

    Article  CAS  Google Scholar 

  19. Chiew, Y. F., Yeo, S. F., Hall, L. M. & Livermore, D. M. Can susceptibility to an antimicrobial be restored by halting its use? The case of streptomycin versus Enterobacteriaceae. J. Antimicrob. Chemother. 41, 247–251 (1998).

    Article  CAS  Google Scholar 

  20. Enne, V. I., Livermore, D. M., Stephens, P. & Hall, L. M. Persistence of sulphonamide resistance in Escherichia coli in the UK despite national prescribing restriction. Lancet 357, 1325–1328 (2001).

    Article  CAS  Google Scholar 

  21. Kataja, J. et al. Clonal spread of group A streptococcus with the new type of erythromycin resistance. Finnish study group for antimicrobial resistance. J. Infect. Dis. 177, 786–789 (1998).

    Article  CAS  Google Scholar 

  22. Soares, S., Kristinsson, K. G., Musser, J. M. & Tomasz, A. Evidence for the introduction of a multiresistant clone of serotype 6B Streptococcus pneumoniae from Spain to Iceland in the late 1980s. J. Infect. Dis. 168, 158–163 (1993).

    Article  CAS  Google Scholar 

  23. Bradley, S. J. et al. The control of hyperendemic glycopeptide-resistant Enterococcus spp. on a haematology unit by changing antibiotic usage. J. Antimicrob. Chemother. 43, 261–266 (1999).

    Article  CAS  Google Scholar 

  24. Settle, C. D., Wilcox, M. H., Fawley, W. N., Corrado, O. J. & Hawkey, P. M. Prospective study of the risk of Clostridium difficile diarrhoea in elderly patients following treatment with cefotaxime or piperacillin-tazobactam. Aliment. Pharmacol. Ther. 12, 1217–1223 (1998).

    Article  CAS  Google Scholar 

  25. Patterson, J. E., Hardin, T. C., Kelly, C. A., Garcia, R. C. & Jorgensen, J. H. Association of antibiotic utilization measures and control of multiple-drug resistance in Klebsiella pneumoniae. Infect. Control Hosp. Epidemiol. 21, 455–458 (2000).

    Article  CAS  Google Scholar 

  26. Rahal, J. J. et al. Class restriction of cephalosporin use to control total cephalosporin resistance in nosocomial Klebsiella. JAMA 280, 1233–1237 (1998).

    Article  CAS  Google Scholar 

  27. Burke, J. P. Antibiotic resistance — squeezing the balloon? JAMA 280, 1270–1271 (1998).

    Article  CAS  Google Scholar 

  28. Cunha, B. A. Effective antibiotic-resistance control strategies. Lancet 357, 1307–1308 (2001).

    Article  CAS  Google Scholar 

  29. Mendelson, G. et al. Staphylococcus aureus carrier state among elderly residents of a long-term care facility. J. Am. Med. Dir. Assoc. 4, 125–127 (2003).

    Article  Google Scholar 

  30. Wiener, J. et al. Multiple antibiotic-resistant Klebsiella and Escherichia coli in nursing homes. JAMA 281, 517–523 (1999).

    Article  CAS  Google Scholar 

  31. Corkill, J. E. et al. Molecular epidemiology of endemic ciprofloxacin-resistant Neisseria gonorrhoeae in Liverpool. Int. J. STD AIDS 14, 379–385 (2003).

    Article  CAS  Google Scholar 

  32. Bouchard, O. et al. Experience with an 'isolation unit' for patients infected with multi-resistant bacteria. Retrospective study of 49 patients. Presse Med. 28, 1405–1408 (1999).

    CAS  PubMed  Google Scholar 

  33. Muto, C. A. et al. SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and enterococcus. Infect. Control Hosp. Epidemiol. 24, 362–386 (2003).

    Article  Google Scholar 

  34. Kollef, M. H. & Ward, S. The influence of mini-BAL cultures on patient outcomes: implications for the antibiotic management of ventilator-associated pneumonia. Chest 113, 412–420 (1998).

    Article  CAS  Google Scholar 

  35. Gillespie, S. H. Antibiotic resistance in the absence of selective pressure. Int. J. Antimicrob. Agents 17, 171–176 (2001).

    Article  CAS  Google Scholar 

  36. Nagaev, I., Bjorkman, J., Andersson, D. I. & Hughes, D. Biological cost and compensatory evolution in fusidic acid-resistant Staphylococcus aureus. Mol. Microbiol. 40, 433–439 (2001).

    Article  CAS  Google Scholar 

  37. Maisnier-Patin, S., Berg, O. G., Liljas, L. & Andersson, D. I. Compensatory adaptation to the deleterious effect of antibiotic resistance in Salmonella typhimurium. Mol. Microbiol. 46, 355–366 (2002).

    Article  CAS  Google Scholar 

  38. Lenski, R. E. The cost of antibiotic resistance — from the perspective of a bacterium. Ciba Found. Symp. 207, 131–140 (1997).

    CAS  PubMed  Google Scholar 

  39. Bouma, J. E. & Lenski, R. E. Evolution of a bacteria/plasmid association. Nature 335, 351–352 (1988).

    Article  CAS  Google Scholar 

  40. Rawlings, D. E. Proteic toxin-antitoxin, bacterial plasmid addiction systems and their evolution with special reference to the pas system of pTF-FC2. FEMS Microbiol. Lett. 176, 269–277 (1999).

    Article  CAS  Google Scholar 

  41. Galdbart, J. O. et al. TEM-24 extended-spectrum β-lactamase-producing Enterobacter aerogenes: long-term clonal dissemination in French hospitals. Clin. Microbiol. Infect. 6, 316–323 (2000).

    Article  CAS  Google Scholar 

  42. Klugman, K. P. The successful clone: the vector of dissemination of resistance in Streptococcus pneumoniae. J. Antimicrob. Chemother. 50, S1–S5 (2002).

    Article  Google Scholar 

  43. Arlet, G. et al. Molecular epidemiology of Klebsiella pneumoniae strains that produce SHV-4 β-lactamase and which were isolated in 14 French hospitals. J. Clin. Microbiol. 32, 2553–2558 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Johnson, A. P. et al. Dominance of EMRSA-15 and -16 among MRSA causing nosocomial bacteraemia in the UK: analysis of isolates from the European antimicrobial resistance surveillance system (EARSS). J. Antimicrob. Chemother. 48, 143–144 (2001).

    Article  CAS  Google Scholar 

  45. Livermore, D. M. The threat from the pink corner. Ann. Med. 35, 226–234 (2003).

    Article  Google Scholar 

  46. Projan, S. Why is big pharma getting out of antibacterial drug discovery? Curr. Opin. Microbiol. 6, 427–430 (2003).

    Article  Google Scholar 

  47. Paterson, D. L. Recommendation for treatment of severe infections caused by Enterobacteriaceae-producing extended-spectrum β-lactamases (ESBLs). Clin. Microbiol. Infect. 6, 460–463 (2000).

    Article  CAS  Google Scholar 

  48. Miller, H. I. Dying for FDA reform. Washington Times [online], (cited 20 Nov), <http://washingtontimes.com/commentary/20030615-121434-1657r.htm> (15 Jun 2003).

    Google Scholar 

  49. Sheehan, G. & Chew, N. S. Y. in Fluoroquinolone Antibiotics (eds Ronald, A. R. & Low, D. E.) 1–9 (Birkhauser–Verlag, 2003).

    Book  Google Scholar 

  50. Baquero, F., Bax, R. & Phillips, I. Antibiotic clinical trials revisited. J. Antimicrob. Chemother. 46, 651–652 (2000).

    Article  CAS  Google Scholar 

  51. Chopra, I., O'Neill, A. J. & Miller, K. The role of mutators in the emergence of antibiotic-resistant bacteria. Drug Resist. Updat. 6, 137–145 (2003).

    Article  CAS  Google Scholar 

  52. Spratt, B. G. Resistance to antibiotics mediated by target alterations. Science 264, 388–393 (1994).

    Article  CAS  Google Scholar 

  53. Reacher, M. H. et al. Bacteraemia and antibiotic resistance of its pathogens reported in England and Wales between 1990 and 1998: trend analysis. BMJ 320, 213–216 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to many colleagues past and present whose collaboration has enabled his own work and the development of the views expressed here.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

D. Livermore, and his laboratory staff, are employed by the Health Protection Agency, and so have an interest in it's (and ultimately the state's) continued interest in resistance. He has received sponsorship and research grants from numerous pharmaceutical, biotech and diagnostics companies. Directly, or as attorney, he manages personal and family shareholdings, including in pharmaceutical companies.

Related links

Related links

FURTHER INFORMATION

EARSS

Glossary

COMMUNITY PRESCRIBING

The prescription of antibiotics outside hospitals.

BACTERAEMIAS

A bacterial infection of the bloodstream.

COMMUNITY-ACQUIRED INFECTIONS

An infection that is acquired outside of a hospital.

EPIDEMIC CLONES

Bacterial strains that have spread widely among communities or hospitals.

FORMULARY CHANGE

A change to standard therapies in hospitals.

EMPIRICAL ANTIBIOTIC TREATMENT

A treatment that is based on the pathogens that are likely to be present on the basis of the clinical condition, but before confirmation by culturing bacteria in the laboratory.

STEP-DOWN THERAPY

A switch from powerful to less powerful antibiotics — for example, because the patient is recovering well or a highly sensitive pathogen has been isolated.

COMPENSATION

Adaptations or mutations that enable bacteria to adjust to the fitness burden that is caused by acquired resistance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Livermore, D. Can better prescribing turn the tide of resistance?. Nat Rev Microbiol 2, 73–78 (2004). https://doi.org/10.1038/nrmicro798

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro798

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing