Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The RNA exosome and proteasome: common principles of degradation control

Abstract

Defective RNAs and proteins are swiftly degraded by cellular quality control mechanisms. A large fraction of their degradation is mediated by the exosome and the proteasome. These complexes have a similar architectural framework based on cylindrical, hollow structures that are conserved from bacteria and archaea to eukaryotes. Mechanistic similarities have also been identified for how RNAs and proteins are channelled into these structures and prepared for degradation. Insights gained from studies of the proteasome should now set the stage for elucidating the regulation, assembly and small-molecule inhibition of the exosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The architecture of the core exosome and proteasome complexes.
Figure 2: Proteasome and exosome regulatory proteins bound to the core particles.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Doma, M. K. & Parker, R. RNA quality control in eukaryotes. Cell 131, 660–668 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Chen, B., Retzlaff, M., Roos, T. & Frydman, J. Cellular strategies of protein quality control. Cold Spring Harb. Perspect. Biol. 3, a004374 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ciechanover, A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nature Rev. Mol. Cell Biol. 6, 79–87 (2005).

    Article  CAS  Google Scholar 

  4. Baumeister, W., Walz, J., Zühl, F. & Seemüller, E. The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367–380 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Löwe, J. et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 268, 533–539 (1995).

    Article  PubMed  Google Scholar 

  6. Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386, 463–471 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Seemüller, E. et al. Proteasome from Thermoplasma acidophilum: a threonine protease. Science 268, 579–582 (1995).

    Article  PubMed  Google Scholar 

  8. Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M. & Tollervey, D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′->5′ exoribonucleases. Cell 91, 457–466 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Van Hoof, A. & Parker, R. The exosome: a proteasome for RNA? Cell 99, 347–350 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Mitchell, P. & Tollervey, D. mRNA stability in eukaryotes. Curr. Opin. Genet. Dev. 10, 193–198 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Schaeffer, D., Clark, A., Klauer, A. A., Tsanova, B. & Van Hoof, A. Functions of the cytoplasmic exosome. Adv. Exp. Med. Biol. 702, 79–90 (2011).

    Article  PubMed  Google Scholar 

  12. Lorentzen, E. et al. The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nature Struct. Mol. Biol. 12, 575–581 (2005).

    Article  CAS  Google Scholar 

  13. Büttner, K., Wenig, K. & Hopfner, K.-P. Structural framework for the mechanism of archaeal exosomes in RNA processing. Mol. Cell 20, 461–471 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. Lorentzen, E. & Conti, E. Structural basis of 3′ end RNA recognition and exoribonucleolytic cleavage by an exosome RNase PH core. Mol. Cell 20, 473–481 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Lorentzen, E. & Conti, E. The exosome and the proteasome: nano-compartments for degradation. Cell 125, 651–654 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Büttner, K., Wenig, K. & Hopfner, K.-P. The exosome: a macromolecular cage for controlled RNA degradation. Mol. Microbiol. 61, 1372–1379 (2006).

    Article  PubMed  CAS  Google Scholar 

  17. Liu, Q., Greimann, J. C. & Lima, C. D. Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127, 1223–1237 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Dziembowski, A., Lorentzen, E., Conti, E. & Séraphin, B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nature Struct. Mol. Biol. 14, 15–22 (2007).

    Article  CAS  Google Scholar 

  19. Bonneau, F., Basquin, J., Ebert, J., Lorentzen, E. & Conti, E. The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation. Cell 139, 547–559 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Malet, H. et al. RNA channelling by the eukaryotic exosome. EMBO Rep. 11, 936–942 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wasmuth, E. V. & Lima, C. D. Exo- and endoribonucleolytic activities of yeast cytoplasmic and nuclear RNA exosomes are dependent on the noncatalytic core and central channel. Mol. Cell 48, 133–144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Makino, D. L., Baumgärtner, M. & Conti, E. Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature 495, 70–75 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Beck, F. et al. Near-atomic resolution structural model of the yeast 26S proteasome. Proc. Natl Acad. Sci. USA 109, 14870–14875 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lasker, K. et al. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc. Natl Acad. Sci. USA 109, 1380–1387 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lander, G. C. et al. Complete subunit architecture of the proteasome regulatory particle. Nature 482, 186–191 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kish-Trier, E. & Hill, C. P. Structural biology of the proteasome. Annu. Rev. Biophys. 42, 29–49 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sharon, M. et al. 20S proteasomes have the potential to keep substrates in store for continual degradation. J. Biol. Chem. 281, 9569–9575 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Dick, T. P. et al. Contribution of proteasomal β-subunits to the cleavage of peptide substrates analyzed with yeast mutants. J. Biol. Chem. 273, 25637–25646 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, H.-W. et al. Architecture of the yeast Rrp44 exosome complex suggests routes of RNA recruitment for 3′ end processing. Proc. Natl Acad. Sci. USA 104, 16844–16849 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chekanova, J. A., Shaw, R. J., Wills, M. A. & Belostotsky, D. A. Poly(A) tail-dependent exonuclease AtRrp41p from Arabidopsis thaliana rescues 5.8 S rRNA processing and mRNA decay defects of the yeast ski6 mutant and is found in an exosome-sized complex in plant and yeast cells. J. Biol. Chem. 275, 33158–33166 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Yehudai-Resheff, S., Hirsh, M. & Schuster, G. Polynucleotide phosphorylase functions as both an exonuclease and a poly(A) polymerase in spinach chloroplasts. Mol. Cell. Biol. 21, 5408–5416 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Slomovic, S., Portnoy, V., Yehudai-Resheff, S., Bronshtein, E. & Schuster, G. Polynucleotide phosphorylase and the archaeal exosome as poly(A)-polymerases. Biochim. Biophys. Acta 1779, 247–255 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Wahle, E. Wrong PH for RNA degradation. Nature Struct. Mol. Biol. 14, 5–7 (2007).

    Article  CAS  Google Scholar 

  34. Marques, A. J., Palanimurugan, R., Matias, A. C., Ramos, P. C. & Dohmen, R. J. Catalytic mechanism and assembly of the proteasome. Chem. Rev. 109, 1509–1536 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Kisselev, A. F., Akopian, T. N., Castillo, V. & Goldberg, A. L. Proteasome active sites allosterically regulate each other, suggesting a cyclical bite-chew mechanism for protein breakdown. Mol. Cell 4, 395–402 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Kisselev, A. F. et al. The caspase-like sites of proteasomes, their substrate specificity, new inhibitors and substrates, and allosteric interactions with the trypsin-like sites. J. Biol. Chem. 278, 35869–35877 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Kisselev, A. F., Akopian, T. N., Woo, K. M. & Goldberg, A. L. The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J. Biol. Chem. 274, 3363–3371 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Botbol, V. & Scornik, O. A. Peptide intermediates in the degradation of cellular proteins. Bestatin permits their accumulation in mouse liver in vivo. J. Biol. Chem. 258, 1942–1949 (1983).

    Article  CAS  PubMed  Google Scholar 

  39. Goldberg, A. L. & Rock, K. L. Proteolysis, proteasomes and antigen presentation. Nature 357, 375–379 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. York, I. A. & Rock, K. L. Antigen processing and presentation by the class I major histocompatibility complex. Annu. Rev. Immunol. 14, 369–396 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Rammensee, H. G., Friede, T. & Stevanoviíc, S. MHC ligands and peptide motifs: first listing. Immunogenetics 41, 178–228 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Palombella, V. J., Rando, O. J., Goldberg, A. L. & Maniatis, T. The ubiquitin–proteasome pathway is required for processing the NF-κ B1 precursor protein and the activation of NF-κB. Cell 78, 773–785 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Hoppe, T. et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102, 577–586 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Su, K. et al. An N-terminal region of Sp1 targets its proteasome-dependent degradation in vitro. J. Biol. Chem. 274, 15194–15202 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Tian, L., Holmgren, R. A. & Matouschek, A. A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-κB. Nature Struct. Mol. Biol. 12, 1045–1053 (2005).

    Article  CAS  Google Scholar 

  46. Russell, S. J., Reed, S. H., Huang, W., Friedberg, E. C. & Johnston, S. A. The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. Mol. Cell 3, 687–695 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Ezhkova, E. & Tansey, W. P. Proteasomal ATPases link ubiquitylation of histone H2B to methylation of histone H3. Mol. Cell 13, 435–442 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Lee, D. et al. The proteasome regulatory particle alters the SAGA coactivator to enhance its interactions with transcriptional activators. Cell 123, 423–436 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Ferdous, A., Kodadek, T. & Johnston, S. A. A nonproteolytic function of the 19S regulatory subunit of the 26S proteasome is required for efficient activated transcription by human RNA polymerase II. Biochemistry 41, 12798–12805 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Lebreton, A., Tomecki, R., Dziembowski, A. & Séraphin, B. Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature 456, 993–996 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Schaeffer, D. et al. The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities. Nature Struct. Mol. Biol. 16, 56–62 (2009).

    Article  CAS  Google Scholar 

  52. Schneider, C., Leung, E., Brown, J. & Tollervey, D. The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome. Nucleic Acids Res. 37, 1127–1140 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Briggs, M. W., Burkard, K. T. & Butler, J. S. Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3′ end formation. J. Biol. Chem. 273, 13255–13263 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Allmang, C. et al. The yeast exosome and human PM-Scl are related complexes of 3′ ->5′ exonucleases. Genes Dev. 13, 2148–2158 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mitchell, P. et al. Rrp47p is an exosome-associated protein required for the 3′ processing of stable RNAs. Mol. Cell. Biol. 23, 6982–6992 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stead, J. A., Costello, J. L., Livingstone, M. J. & Mitchell, P. The PMC2NT domain of the catalytic exosome subunit Rrp6p provides the interface for binding with its cofactor Rrp47p, a nucleic acid-binding protein. Nucleic Acids Res. 35, 5556–5567 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schilders, G., van Dijk, E. & Pruijn, G. J. M. C1D and hMtr4p associate with the human exosome subunit PM/Scl-100 and are involved in pre-rRNA processing. Nucleic Acids Res. 35, 2564–2572 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Allmang, C. et al. Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J. 18, 5399–5410 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Basu, U. et al. The RNA exosome targets the AID cytidine deaminase to both strands of transcribed duplex DNA substrates. Cell 144, 353–363 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Berko, D. et al. The direction of protein entry into the proteasome determines the variety of products and depends on the force needed to unfold its two termini. Mol. Cell 48, 601–611 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lorentzen, E., Basquin, J., Tomecki, R., Dziembowski, A. & Conti, E. Structure of the active subunit of the yeast exosome core, Rrp44: diverse modes of substrate recruitment in the RNase II nuclease family. Mol. Cell 29, 717–728 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Callahan, K. P. & Butler, J. S. Evidence for core exosome independent function of the nuclear exoribonuclease Rrp6p. Nucleic Acids Res. 36, 6645–6655 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Förster, A., Whitby, F. G. & Hill, C. P. The pore of activated 20S proteasomes has an ordered 7-fold symmetric conformation. EMBO J. 22, 4356–4364 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Smith, D. M. et al. Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry. Mol. Cell 27, 731–744 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Knowlton, J. R. et al. Structure of the proteasome activator REGalpha (PA28alpha). Nature 390, 639–643 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Whitby, F. G. et al. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408, 115–120 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Förster, A., Masters, E. I., Whitby, F. G., Robinson, H. & Hill, C. P. The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol. Cell 18, 589–599 (2005).

    Article  PubMed  CAS  Google Scholar 

  69. Sadre-Bazzaz, K., Whitby, F. G., Robinson, H., Formosa, T. & Hill, C. P. Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening. Mol. Cell 37, 728–735 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu, C.-W., Corboy, M. J., Demartino, G. N. & Thomas, P. J. Endoproteolytic activity of the proteasome. Science 299, 408–411 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Brown, J. T., Bai, X. & Johnson, A. W. The yeast antiviral proteins Ski2p, Ski3p, and Ski8p exist as a complex in vivo. RNA 6, 449–457 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Araki, Y. et al. Ski7p G protein interacts with the exosome and the Ski complex for 3′-to-5′ mRNA decay in yeast. EMBO J. 20, 4684–4693 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lacava, J. et al. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121, 713–724 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Wyers, F. et al. Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121, 725–737 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Vaňáčová, Š. et al. A new yeast poly(A) polymerase complex involved in RNA quality control. Plos Biol. 3, e189 (2005).

    Article  PubMed  CAS  Google Scholar 

  76. Halbach, F., Reichelt, P., Rode, M. & Conti, E. The yeast Ski complex: crystal structure and RNA channeling to the exosome complex. Cell 154, 814–826 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Van Hoof, A., Frischmeyer, P. A., Dietz, H. C. & Parker, R. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295, 2262–2264 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Houseley, J. & Tollervey, D. The many pathways of RNA degradation. Cell 136, 763–776 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Wlotzka, W., Kudla, G., Granneman, S. & Tollervey, D. The nuclear RNA polymerase II surveillance system targets polymerase III transcripts. EMBO J. 30, 1790–1803 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schilders, G., Raijmakers, R., Raats, J. M. H. & Pruijn, G. J. M. MPP6 is an exosome-associated RNA-binding protein involved in 5.8S rRNA maturation. Nucleic Acids Res. 33, 6795–6804 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sledź, P., Förster, F. & Baumeister, W. Allosteric effects in the regulation of 26S proteasome activities. J. Mol. Biol. 425, 1415–1423 (2013).

    Article  PubMed  CAS  Google Scholar 

  82. Schneider, C., Kudla, G., Wlotzka, W., Tuck, A. & Tollervey, D. Transcriptome-wide analysis of exosome targets. Mol. Cell 48, 422–433 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu, C., Choe, V. & Rao, H. Genome-wide approaches to systematically identify substrates of the ubiquitin-proteasome pathway. Trends Biotechnol. 28, 461–467 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Crawford, L. J., Walker, B. & Irvine, A. E. Proteasome inhibitors in cancer therapy. J. Cell Commun. Signal 5, 101–110 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kisselev, A. F., van der Linden, W. A. & Overkleeft, H. S. Proteasome inhibitors: an expanding army attacking a unique target. Chem. Biol. 19, 99–115 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xie, Y. & Varshavsky, A. RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc. Natl Acad. Sci. USA 98, 3056–3061 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Murata, S., Yashiroda, H. & Tanaka, K. Molecular mechanisms of proteasome assembly. Nature Rev. Mol. Cell Biol. 10, 104–115 (2009).

    Article  CAS  Google Scholar 

  88. Tanaka, K. The proteasome: from basic mechanisms to emerging roles. Keio J. Med. 62, 1–12 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Duncan, C. D. S. & Mata, J. Widespread cotranslational formation of protein complexes. PLoS Genet. 7, e1002398 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Wilk, S. & Orlowski, M. Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex. J. Neurochem. 40, 842–849 (1983).

    Article  CAS  PubMed  Google Scholar 

  92. Stadtmueller, B. M. & Hill, C. P. Proteasome activators. Mol. Cell 41, 8–19 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fehlker, M., Wendler, P., Lehmann, A. & Enenkel, C. Blm3 is part of nascent proteasomes and is involved in a late stage of nuclear proteasome assembly. EMBO Rep. 4, 959–963 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ma, C. P., Slaughter, C. A. & DeMartino, G. N. Identification, purification, and characterization of a protein activator (PA28) of the 20 S proteasome (macropain). J. Biol. Chem. 267, 10515–10523 (1992).

    Article  CAS  PubMed  Google Scholar 

  95. Dubiel, W., Pratt, G., Ferrell, K. & Rechsteiner, M. Purification of an 11 S regulator of the multicatalytic protease. J. Biol. Chem. 267, 22369–22377 (1992).

    Article  CAS  PubMed  Google Scholar 

  96. Yao, Y. et al. Structural and functional characterizations of the proteasome-activating protein PA26 from Trypanosoma brucei. J. Biol. Chem. 274, 33921–33930 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Ustrell, V., Hoffman, L., Pratt, G. & Rechsteiner, M. PA200, a nuclear proteasome activator involved in DNA repair. EMBO J. 21, 3516–3525 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Brooks, P. et al. Subcellular localization of proteasomes and their regulatory complexes in mammalian cells. Biochem. J. 346 Pt. 1, 155–161 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to W. Baumeister, F. Förster, J.Tittor, E. Kowalinski, S. Falk and members of their laboratory for discussions and critical comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Debora L. Makino, Felix Halbach or Elena Conti.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makino, D., Halbach, F. & Conti, E. The RNA exosome and proteasome: common principles of degradation control. Nat Rev Mol Cell Biol 14, 654–660 (2013). https://doi.org/10.1038/nrm3657

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3657

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing