Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The evolution of molecular markers — just a matter of fashion?

Abstract

In less than half a century, molecular markers have totally changed our view of nature, and in the process they have evolved themselves. However, all of the molecular methods developed over the years to detect variation do so in one of only three conceptually different classes of marker: protein variants (allozymes), DNA sequence polymorphism and DNA repeat variation. The latest techniques promise to provide cheap, high-throughput methods for genotyping existing markers, but might other traditional approaches offer better value for some applications?

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Subjective view of the the changing relative importance of different molecular markers.

References

  1. Sturtevant, A. H. The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J. Exp. Zool. 14, 43–59 (1913).

    Google Scholar 

  2. Hubby, J. L. & Lewontin, R. C. A molecular approach to the study of genic heterozygosity in natural populations. I. The number of alleles at different loci in Drosophila pseudoobscura. Genetics 54, 203–215 (1966).

    Google Scholar 

  3. Harris, H. Enzyme polymorphism in man. Proc. R. Soc. Lond. B 164, 298–310 (1966).

    CAS  PubMed  Google Scholar 

  4. Lewontin, R. C. & Hubby, J. L. A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54, 595–609 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Johnson F., Kanapi C., Richardson R., Wheeler M. & Stone W. An analysis of polymorphisms among isozyme loci in dark and light Drosophila ananassae strains from American and Western Samoa. Proc. Natl Acad. Sci. USA 56, 119–125 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kimura, M. Evolutionary rate at the molecular level. Nature 217, 624–626 (1968).

    CAS  PubMed  Google Scholar 

  7. King, J. L. & Jukes, T. H. Non-Darwinian evolution. Science 164, 788–798 (1969).

    CAS  PubMed  Google Scholar 

  8. Hillis, D. M., Moritz, C. & Mable, B. K. Molecular Systematics (Sinauer Associates, Sunderland, 1996).

    Google Scholar 

  9. Berry, A. & Kreitman, M. Molecular analysis of an allozyme cline: alcohol dehydrogenase in Drosophila melanogster on the east coast of North America. Genetics 134, 869–893 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hudson, R. R., Bailey, K., Skarecky, D., Kwiatowski, J. & Ayala, F. J. Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics 136, 1329–1340 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Krieger, M. J. & Ross, K. G. Identification of a major gene regulating complex social behavior. Science 295, 328–332 (2002).

    CAS  PubMed  Google Scholar 

  12. Botstein, D., White, R. L., Skolnick, M. & Davis, R. W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kerem, B. et al. Identification of the cystic fibrosis gene: genetic analysis. Science 245, 1073–1080 (1989).

    CAS  PubMed  Google Scholar 

  14. Avise, J. C. Molecular Markers, Natural History and Evolution (Chapman and Hall, New York, 1994).

    Google Scholar 

  15. Jeffreys, A. J., Wilson, V. & Thein, S. L. Hypervariable 'minisatellite' regions in human DNA. Nature 314, 67–73 (1985).

    CAS  PubMed  Google Scholar 

  16. Jeffreys, A. J. et al. Human minisatellites, repeat DNA instability and meiotic recombination. Electrophoresis 20, 1665–1675 (1999).

    CAS  PubMed  Google Scholar 

  17. Gill, P., Jeffreys, A. J. & Werrett, D. J. Forensic application of DNA 'fingerprinting'. Nature 318, 577–579 (1985).

    CAS  PubMed  Google Scholar 

  18. Armour, J. A. L., Povey, S., Jeremiah, S. & Jeffreys, A. J. Systematic cloning of human minisatellites from ordered array charomid libaries. Genomics 8, 501–512 (1990).

    CAS  PubMed  Google Scholar 

  19. Saiki, R. K. et al. Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354 (1985).

    CAS  PubMed  Google Scholar 

  20. Litt, M. & Luty, J. A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 44, 397–401 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tautz, D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 17, 6463–6471 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Weber, J. L. & May, P. E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44, 388–396 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Goldstein, D. & Schlötterer, C. Microsatellites: Evolution and Applications (Oxford Univ. Press, Oxford, 1999).

    Google Scholar 

  24. Kong, A. et al. A high-resolution recombination map of the human genome. Nature Genet. 31, 241–247 (2002).

    CAS  PubMed  Google Scholar 

  25. de Gortari, M. J. et al. A second-generation linkage map of the sheep genome. Mamm. Genome 9, 204–209 (1998).

    CAS  PubMed  Google Scholar 

  26. Sakamoto, T. et al. A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics 155, 1331–1345 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Queller, D. C., Strassmann, J. E. & Hughes, C. R. Microsatellites and kinship. Trends Ecol. Evol. 8, 285–288 (1993).

    CAS  PubMed  Google Scholar 

  28. Schlötterer, C. Evolutionary dynamics of microsatellite DNA. Chromosoma 109, 365–371 (2000).

    PubMed  Google Scholar 

  29. Ellegren, H. Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet. 16, 551–558 (2000).

    CAS  PubMed  Google Scholar 

  30. Tóth, G., Gáspári, Z. & Jurka, J. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res. 10, 967–981 (2000).

    PubMed  PubMed Central  Google Scholar 

  31. Dieringer, D. & Schlötterer, C. Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species. Genome Res. 13, 2242–2251 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A. & Tingey, S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18, 6531–6535 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zietkiewicz, E., Rafalski, A. & Labuda, D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20, 176–183 (1994).

    CAS  PubMed  Google Scholar 

  34. Kalendar, R., Grob, T., Regina, M. T., Suoniemi, A. & Schulman, A. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor. Appl. Genet. 98, 704–711 (1999).

    CAS  Google Scholar 

  35. Zabeau, M. & Vos, P. Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent 0 534858 A1 (1993).

    Google Scholar 

  36. Vos, P. et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407–4414 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Parsons, Y. M. & Shaw, K. L. Mapping unexplored genomes: a genetic linkage map of the Hawaiian cricket Laupala. Genetics 162, 1275–1282 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Castiglioni, P. et al. An AFLP-based procedure for the efficient mapping of mutations and DNA probes in barley. Genetics 149, 2039–2056 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Cervera, M. T. et al. Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers. Genetics 158, 787–809 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Menz, M. A. et al. A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP, RFLP and SSR markers. Plant Mol. Biol. 48, 483–499 (2002).

    CAS  PubMed  Google Scholar 

  41. Remington, D. L., Whetten, R. W., Liu, B. H. & O'Malley, D. M. Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda. Theor. Appl. Genet. 98, 1279–1292 (1999).

    CAS  PubMed  Google Scholar 

  42. Schierwater, B. & Ender, A. Different thermostable DNA polymerases may amplify different RAPD products. Nucleic Acids Res. 21, 4647–4648 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, X. & Sullivan, P. F. Single nucleotide polymorphism genotyping: biochemistry, protocol, cost and throughput. Pharmacogenomics J. 3, 77–96 (2003).

    PubMed  Google Scholar 

  44. Picoult-Newberg, L. et al. Mining SNPs from EST databases. Genome Res. 9, 167–174 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Weber, J. L. & Myers, E. W. Human whole-genome shotgun sequencing. Genome Res. 7, 401–409 (1997).

    CAS  PubMed  Google Scholar 

  46. Altshuler, D. et al. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407, 513–516 (2000).

    CAS  PubMed  Google Scholar 

  47. Wakeley, J., Nielsen, R., Liu-Cordero, S. N. & Ardlie, K. The discovery of single-nucleotide polymorphisms — and inferences about human demographic history. Am. J. Hum. Genet. 69, 1332–1347 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nielsen, R. & Signorovitch, J. Correcting for ascertainment biases when analyzing SNP data: applications to the estimation of linkage disequilibrium. Theor. Popul. Biol. 63, 245–255 (2003).

    PubMed  Google Scholar 

  49. Kuhner, M. K., Beerli, P., Yamato, J. & Felsenstein, J. Usefulness of single nucleotide polymorphism data for estimating population parameters. Genetics 156, 439–447 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Brumfield, R. T., Beerli, P., Nickerson, D. A. & Edwards, S. V. The utility of single nucleotide polymorphism in inferences of population history. Trends Ecol. Evol. 18, 249–256 (2003).

    Google Scholar 

  51. Meyer, S., Weiss, G. & von Haeseler, A. Pattern of nucleotide substitution and rate heterogeneity in the hypervariable regions I and II of human mtDNA. Genetics 152, 1103–1110 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Schlötterer, C. & Harr, B. Single nucleotide polymorphisms derived from ancestral populations show no evidence for biased diversity estimates in Drosophila melanogaster. Mol. Ecol. 11, 947–950 (2002).

    PubMed  Google Scholar 

  53. McVean, G., Awadalla, P. & Fearnhead, P. A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics 160, 1231–1241 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kuhner, M. K., Yamato, J. & Felsenstein, J. Maximum likelihood estimation of recombination rates from population data. Genetics 156, 1393–1401 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Beerli, P. & Felsenstein, J. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc. Natl Acad. Sci. USA 98, 4563–4568 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kreitman, M. Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature 304, 412–417 (1983).

    CAS  PubMed  Google Scholar 

  57. Kreitman, M. Methods to detect selection in populations with applications to the human. Annu. Rev. Genom. Hum. Genet. 1, 539–559 (2000).

    CAS  Google Scholar 

  58. Chikhi, L., Bruford, M. W. & Beaumont, M. A. Estimation of admixture proportions: a likelihood-based approach using Markov chain Monte Carlo. Genetics 158, 1347–1362 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Reich, D. E., Feldman, M. W. & Goldstein, D. B. Statistical properties of two tests that use multilocus data sets to detect population expansions. Mol. Biol. Evol. 16, 453–466 (1999).

    CAS  Google Scholar 

  60. Wilson, I. J. & Balding, D. J. Genealogical inference from microsatellite data. Genetics 150, 499–510 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Beaumont, M. A. Detecting population expansion and decline using microsatellites. Genetics 153, 2013–2029 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kuhner, M. K., Yamato, J. & Felsenstein, J. Estimating effective population size and mutation rate from sequence data using Metropolis-Hastings sampling. Genetics 140, 1421–1430 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Harpending, H. C. et al. Genetic traces of ancient demography. Proc. Natl Acad. Sci. USA 95, 1961–1967 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wall, J. D., Andolfatto, P. & Przeworski, M. Testing models of selection and demography in Drosophila simulans. Genetics 162, 203–216 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Glaubitz, J. C., Rhodes, O. E. & Dewoody, J. A. Prospects for inferring pairwise relationships with single nucleotide polymorphisms. Mol. Ecol. 12, 1039–1047 (2003).

    CAS  PubMed  Google Scholar 

  66. Terwilliger, J. D., Haghighi, F., Hiekkalinna, T. S. & Goring, H. H. A bias-ed assessment of the use of SNPs in human complex traits. Curr. Opin. Genet. Dev. 12, 726–734 (2002).

    CAS  PubMed  Google Scholar 

  67. Ohashi, J. & Tokunaga, K. Power of genome-wide linkage disequilibrium testing by using microsatellite markers. J. Hum. Genet. 48, 487–491 (2003).

    CAS  PubMed  Google Scholar 

  68. Schlötterer, C. Hitchhiking mapping — functional genomics from the population genetics perspective. Trends Genet. 19, 32–38 (2003).

    PubMed  Google Scholar 

  69. Kayser, M., Brauer, S. & Stoneking, M. A genome scan to detect candidate regions influenced by local natural selection in human populations. Mol. Biol. Evol. 20, 893–900 (2003).

    CAS  PubMed  Google Scholar 

  70. Kohn, M. H., Pelz, H. J. & Wayne, R. K. Natural selection mapping of the warfarin-resistance gene. Proc. Natl Acad. Sci. USA 97, 7911–7915 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Payseur, B. A., Cutter, A. D. & Nachman, M. W. Searching for evidence of positive selection in the human genome using patterns of microsatellite variability. Mol. Biol. Evol. 19, 1143–1153 (2002).

    CAS  PubMed  Google Scholar 

  72. Harr, B., Kauer, M. & Schlötterer, C. Hitchhiking mapping — a population based fine mapping strategy for adaptive mutations in D. melanogaster. Proc. Natl Acad. Sci. USA 99, 12949–12954 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Vigouroux, Y. et al. Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc. Natl Acad. Sci. USA 99, 9650–9655 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Akey, J. M., Zhang, G., Zhang, K., Jin, L. & Shriver, M. D. Interrogating a high-density SNP map for signatures of natural selection. Genome Res. 12, 1805–1814 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sabeti, P. C. et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002).

    CAS  PubMed  Google Scholar 

  76. Gill, P. An assessment of the utility of single nucleotide polymorphism (SNPs) for forensic purposes. Int. J. Legal Med. 114, 204–210 (2001).

    CAS  PubMed  Google Scholar 

  77. Kruglyak, L. The use of a genetic map of biallelic markers in linkage studies. Nature Genet. 17, 21–24 (1997).

    CAS  PubMed  Google Scholar 

  78. Leal, S. M. Genetic maps of microsatellite and single-nucleotide polymorphism markers: are the distances accurate? Genet. Epidemiol. 24, 243–252 (2003).

    PubMed  PubMed Central  Google Scholar 

  79. Schlötterer, C. in Molecular Genetic Analysis of Populations: A Practical Approach 2nd edn (ed. Hoelzel, A. R.) 237–261 (Oxford Univ. Press, Oxford, 1998).

    Google Scholar 

  80. Stephens, M. & Donnelly, P. A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am. J. Hum. Genet. 73, 1162–1170 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Fischer, S. G., & Lerman, L. S. DNA fragments differing by single base-pair substitutions are seperated in denaturing gradient gels: correspondence with melting theory. Proc. Natl Acad. Sci. USA 80, 1579–1583 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Myers, R. M., Lumelsky, N., Lerman, L. S. & Maniatis, T. Detection of single base substitutions in total genomic DNA. Nature 313, 495–497 (1985).

    CAS  PubMed  Google Scholar 

  83. Rosenbaum, V. & Riesner, D. Temperature gradient gel electrophoresis: thermodynamic analysis of nucleic acids and proteins in purified formand in cellular extracts. Biophys. Chem. 26, 235–246 (1987).

    CAS  PubMed  Google Scholar 

  84. Hayashi, K. PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. PCR Methods Appl. 1, 34–38 (1991).

    CAS  PubMed  Google Scholar 

  85. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K. & Sekiya, T. Detection of polymorhisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl Acad. Sci. USA 86, 2766–2770 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. White, M. B., Carvalho, M., Derse, D., O'Brien, S. J. & Dean, M. Detecting single base substitutions as heteroduplex polymorphisms. Genomics 12, 301–306 (1992).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am very thankful to R. Achmann, B. Harr, M.-T. Hauser, R. Nielsen, T. Leeb, C. Vogl and two anonymous reviewers for helpful discussion/comments on earlier versions of the manuscript. The laboratory of C.S. is supported by grants from the Fonds zur Förderung der Wissenschaftlichen Forschung and the European Union.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

FlyBase

Adh

FURTHER INFORMATION

HapMap

Molecular Ecology

Glossary

AMPLIFIED FRAGMENT LENGTH POLYMORPHISM

(AFLP). This marker system uses DNA fragments that are ligated to complementary adaptor oligonucleotides and subsequent rounds of PCR amplification using primers that are complementary to the adaptor sequences. The multiple rounds of amplification reduce the complexity of the PCR product population so that the amplified fragments can be easily resolved by gel electrophoresis.

ADMIXTURE

Gene flow between differentiated populations.

ASCERTAINMENT BIAS

Systematic bias introduced by the criteria used to select individuals and/or loci in which genetic variation is assayed; a pronounced problem for single nucleotide polymorphism (SNP) and restriction fragment length polymorphism (RFLP) analyses.

ASSOCIATION STUDY

A study that aims to identify the joint occurrence of two genetically encoded characteristics in a population. Often, an association between a genetic marker and a phenotype (disease) is assessed.

EUCHROMATIN

Part of an interphase chromosome that stains diffusely; less condensed than the heterochromatin.

F ST

Wright's among-population fixation index. A measure of the extent of population subdivision.

GENE CONVERSION

Non-reciprocal exchange of genetic material among chromosomes.

INTER-RETROTRANSPOSON AMPLIFIED POLYMORPHISM

(IRAP). DNA fragments found between adjacent, oppositely oriented retrotransposons, amplified through PCR, separated by gel electrophoresis and scored for the presence or absence of fragments.

INTER-SIMPLE-SEQUENCE-REPEAT

(ISSR). DNA fragments found between adjacent, oppositely oriented microsatellites, amplified through PCR, separated by gel electrophoresis and scored for the presence or absence of fragments.

LINKAGE DISEQUILIBRIUM

Haplotype frequencies in a population that differ from expectations based on a random combination of alleles at each locus.

PHYLOGENETIC RECONSTRUCTION

Attempt to reconstruct the ancestral relationship among species or populations.

RANDOMLY AMPLIFIED POLYMORPHIC DNA

(RAPD). A marker system that relies on the use of short PCR primers.

RESTRICTION FRAGMENT LENGTH POLYMORPHISM

(RFLP). A fragment length variant that is generated through the presence/absence of a restriction enzyme recognition site. Restriction sites could be gained/lost by base substitutions, insertions or deletions.

STUTTER BANDS

Artifacts that occur by DNA-replication slippage during the PCR amplification of microsatellites. Most stutter bands are shorter than the actual microsatellite allele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlötterer, C. The evolution of molecular markers — just a matter of fashion?. Nat Rev Genet 5, 63–69 (2004). https://doi.org/10.1038/nrg1249

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1249

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing