Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspectives
  • Published:

Prostate focused ultrasound focal therapy—imaging for the future

Abstract

Treatment of prostate cancer using high-intensity focused ultrasound (HIFU) focal therapy will become a reliable treatment option only if several conditions are fulfilled. These conditions concern patient selection, assessment of the tumour location and aggressiveness, evaluation of target tissue destruction, and detection of local recurrence or appearance of new tumours. Regarding patient selection, standard transrectal biopsies are not accurate enough and, although perineal template biopsies can detect tumours, they are invasive, expensive procedures, and there is a risk of incidental detection of insignificant cancers. In turn, multiparametric MRI is accurate for detecting and localizing high-grade (Gleason score ≥7) cancers and may provide non-invasive assessment of tumour aggressiveness. Moreover, contrast-enhanced imaging—ultrasonography or MRI—can assess post-HIFU tissue destruction and provide accurate detection of tumour recurrence, which is a key element for follow up. This Perspectives article will assess whether our current methods for cancer diagnosis, tissue targeting, and treatment follow up are accurate enough to allow the design of robust HIFU focal therapy protocols.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical cancer localized with mp-MRI.
Figure 2: Underestimation of cancer size detected by mp-MRI associating T2-weighted and mp-MRI DCE imaging.
Figure 3: Hemi-ablation of a unilateral recurrence of prostate cancer after radiotherapy.

Similar content being viewed by others

References

  1. Lindner, U., Trachtenberg, J. & Lawrentschuk, N. Focal therapy in prostate cancer: modalities, findings and future considerations. Nat. Rev. Urol. 7, 562–571 (2010).

    Article  PubMed  Google Scholar 

  2. Lawrentschuk, N. & Klotz, L. Active surveillance for low-risk prostate cancer: an update. Nat. Rev. Urol. 8, 312–320 (2011).

    Article  PubMed  Google Scholar 

  3. Suardi, N. et al. Currently used criteria for active surveillance in men with low-risk prostate cancer: an analysis of pathologic features. Cancer 113, 2068–2072 (2008).

    Article  PubMed  Google Scholar 

  4. Ahmed, H. U. et al. Focal therapy for localised unifocal and multifocal prostate cancer: a prospective development study. Lancet Oncol. 13, 622–632 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Crouzet, S. et al. Multicentric oncologic outcomes of high-intensity focused ultrasound for localized prostate cancer in 803 patients. Eur. Urol. 58, 559–566 (2010).

    Article  PubMed  Google Scholar 

  6. Murat, F. J. et al. Mid-term results demonstrate salvage high-intensity focused ultrasound (HIFU) as an effective and acceptably morbid salvage treatment option for locally radiorecurrent prostate cancer. Eur. Urol. 55, 640–647 (2009).

    Article  PubMed  Google Scholar 

  7. Ahmed, H. et al. Focal salvage therapy for localized prostate cancer recurrence after external beam radiotherapy. Cancer http://dx.doi.org/10.1002/cncr.27394

  8. Rouvière, O. et al. Transrectal high-intensity focused ultrasound ablation of prostate cancer: effective treatment requiring accurate imaging. Eur. J. Radiol. 63, 317–327 (2007).

    Article  PubMed  Google Scholar 

  9. Salomir, R. et al. Image-based control of the magnetic resonance imaging-guided focused ultrasound thermotherapy. Top. Magn. Reson. Imaging 17, 139–151 (2006).

    Article  PubMed  Google Scholar 

  10. Marberger, M. et al. Novel approaches to improve prostate cancer diagnosis and management in early-stage disease. BJU Int. 109 (Suppl. 2), 1–7 (2012).

    Article  PubMed  Google Scholar 

  11. Scattoni, V. et al. Is extended and saturation biopsy necessary? Int. J. Urol. 17, 432–447 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Shariat, S. F. & Roehrborn, C. G. Using biopsy to detect prostate cancer. Rev. Urol. 10, 262–280 (2008).

    PubMed  PubMed Central  Google Scholar 

  13. Igel, T. C. et al. Systematic transperineal ultrasound guided template biopsy of the prostate in patients at high risk. J. Urol. 165, 1575–1579 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Sartor, A. O. et al. Evaluating localized prostate cancer and identifying candidates for focal therapy. Urology 72, S12–S24 (2008).

    Article  PubMed  Google Scholar 

  15. Dominguez-Escrig, J. L., McCracken, S. R. & Greene, D. Beyond diagnosis: evolving prostate biopsy in the era of focal therapy. Prostate Cancer 2011, 386207 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Mian, B. M. et al. Predictors of cancer in repeat extended multisite prostate biopsy in men with previous negative extended multisite biopsy. Urology 60, 836–840 (2002).

    Article  PubMed  Google Scholar 

  17. Taneja, S. S. & Mason, M. Candidate selection for prostate cancer focal therapy. J. Endourol. 24, 835–841 (2010).

    Article  PubMed  Google Scholar 

  18. Scales, C. D. Jr et al. Predicting unilateral prostate cancer based on biopsy features: implications for focal ablative therapy--results from the SEARCH database. J. Urol. 178, 1249–1252 (2007).

    Article  PubMed  Google Scholar 

  19. Tsivian, M. et al. Predicting unilateral prostate cancer on routine diagnostic biopsy: sextant vs extended. BJU Int. 105, 1089–1092 (2010).

    Article  PubMed  Google Scholar 

  20. Tareen, B. et al. Can contemporary transrectal prostate biopsy accurately select candidates for hemi-ablative focal therapy of prostate cancer? BJU Int. 104, 195–199 (2009).

    Article  PubMed  Google Scholar 

  21. Walz, J. et al. High incidence of prostate cancer detected by saturation biopsy after previous negative biopsy series. Eur. Urol. 50, 498–505 (2006).

    Article  PubMed  Google Scholar 

  22. Keetch, D. W., Catalona, W. J. & Smith, D. S. Serial prostatic biopsies in men with persistently elevated serum prostate specific antigen values. J. Urol. 151, 1571–1574 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Tsivian, M., Hruza, M., Mouraviev, V., Rassweiler, J. & Polascik, T. J. Prostate biopsy in selecting candidates for hemiablative focal therapy. J. Endourol. 24, 849–853 (2010).

    Article  PubMed  Google Scholar 

  24. Ashley, R. A. et al. Reassessing the diagnostic yield of saturation biopsy of the prostate. Eur. Urol. 53, 976–981 (2008).

    Article  PubMed  Google Scholar 

  25. Kawakami, S. et al. Direct comparison between transrectal and transperineal extended prostate biopsy for the detection of cancer. Int. J. Urol. 14, 719–724 (2007).

    Article  PubMed  Google Scholar 

  26. Falzarano, S. M. et al. Can saturation biopsy predict prostate cancer localization in radical prostatectomy specimens: a correlative study and implications for focal therapy. Urology 76, 682–687 (2010).

    Article  PubMed  Google Scholar 

  27. Abdollah, F. et al. The role of transrectal saturation biopsy in tumour localization: pathological correlation after retropubic radical prostatectomy and implication for focal ablative therapy. BJU Int. 108, 366–371 (2011).

    Article  PubMed  Google Scholar 

  28. Merrick, G. S. et al. Prostate cancer distribution in patients diagnosed by transperineal template-guided saturation biopsy. Eur. Urol. 52, 715–723 (2007).

    Article  PubMed  Google Scholar 

  29. Taira, A. V. et al. Performance of transperineal template-guided mapping biopsy in detecting prostate cancer in the initial and repeat biopsy setting. Prostate Cancer Prostatic Dis. 13, 71–77 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Zhan, Y. et al. Targeted prostate biopsy using statistical image analysis. IEEE Trans. Med. Imaging 26, 779–788 (2007).

    Article  PubMed  Google Scholar 

  31. Narayanan, R. et al. Adaptation of a 3D prostate cancer atlas for transrectal ultrasound guided target-specific biopsy. Phys. Med. Biol. 53, 397–406 (2008).

    Article  Google Scholar 

  32. Ou, Y. et al. Sampling the spatial patterns of cancer: optimized biopsy procedures for estimating prostate cancer volume and Gleason score. Med. Image Anal. 13, 609–620 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Megwalu, I. I. et al. Evaluation of a novel precision template-guided biopsy system for detecting prostate cancer. BJU Int. 102, 546–550 (2008).

    Article  PubMed  Google Scholar 

  34. Epstein, J. I., Sanderson, H., Carter, H. B. & Scharfstein, D. O. Utility of saturation biopsy to predict insignificant cancer at radical prostatectomy. Urology 66, 356–360 (2005).

    Article  PubMed  Google Scholar 

  35. Ahmed, H. U. et al. Characterizing clinically significant prostate cancer using template prostate mapping biopsy. J. Urol. 186, 458–464 (2011).

    Article  PubMed  Google Scholar 

  36. Smeenge, M. et al. Role of transrectal ultrasonography (TRUS) in focal therapy of prostate cancer: report from a Consensus Panel. BJU Int. http://dx.doi.org/10.1111/j.1464-410X.2012.11072.x.

  37. Smeenge, M., Mischi, M., Laguna Pes, M. P., de la Rosette, J. J. & Wijkstra, H. Novel contrast-enhanced ultrasound imaging in prostate cancer. World J. Urol. 29, 581–587 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Walz, J. et al. Identification of the prostate cancer index lesion by real-time elastography: considerations for focal therapy of prostate cancer. World J. Urol. 29, 589–594 (2011).

    Article  PubMed  Google Scholar 

  39. Simmons, L. A. et al. Detection, localisation and characterisation of prostate cancer by Prostate HistoScanning. BJU Int. 110, 28–35 (2012).

    Article  PubMed  Google Scholar 

  40. Smeenge, M. et al. Role of transrectal ultrasound in focal therapy of prostate cancer: report from a consensus panel. BJU Int. http://dx.doi.org/10.1111/j.1464-410X.2012.11072.x.

  41. de la Rosette, J. et al. Focal therapy in prostate cancer-report from a consensus panel. J. Endourol. 24, 775–780 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Girouin, N. et al. Prostate dynamic contrast-enhanced MRI with simple visual diagnostic criteria: is it reasonable? Eur. Radiol. 17, 1498–1509 (2007).

    Article  PubMed  Google Scholar 

  43. Fütterer, J. J. et al. Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology 241, 449–458 (2006).

    Article  PubMed  Google Scholar 

  44. Tan, C. H., Wang, J. & Kundra, V. Diffusion weighted imaging in prostate cancer. Eur. Radiol. 21, 593–603 (2011).

    Article  PubMed  Google Scholar 

  45. Katahira, K. et al. Ultra-high-b-value diffusion-weighted MR imaging for the detection of prostate cancer: evaluation in 201 cases with histopathological correlation. Eur. Radiol. 21, 188–196 (2011).

    Article  PubMed  Google Scholar 

  46. Reinsberg, S. A. et al. Combined use of diffusion-weighted MRI and 1H MR spectroscopy to increase accuracy in prostate cancer detection. AJR Am. J. Roentgenol. 188, 91–98 (2007).

    Article  PubMed  Google Scholar 

  47. Ahmed, H. U. et al. Is it time to consider a role for MRI before prostate biopsy? Nat. Rev. Clin. Oncol. 6, 197–206 (2009).

    Article  PubMed  Google Scholar 

  48. Sciarra, A. et al. Advances in magnetic resonance imaging: how they are changing the management of prostate cancer. Eur. Urol. 59, 962–977 (2011).

    Article  PubMed  Google Scholar 

  49. Akin, O. et al. Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology 239, 784–792 (2006).

    Article  PubMed  Google Scholar 

  50. Oto, A. et al. Prostate cancer: differentiation of central gland cancer from benign prostatic hyperplasia by using diffusion-weighted and dynamic contrast-enhanced MR imaging. Radiology 257, 715–723 (2010).

    Article  PubMed  Google Scholar 

  51. Lemaitre, L. et al. Dynamic contrast-enhanced MRI of anterior prostate cancer: morphometric assessment and correlation with radical prostatectomy findings. Eur. Radiol. 19, 470–480 (2009).

    Article  PubMed  Google Scholar 

  52. Villers, A. et al. Dynamic contrast enhanced, pelvic phased array magnetic resonance imaging of localized prostate cancer for predicting tumor volume: correlation with radical prostatectomy findings. J. Urol. 176, 2432–2437 (2006).

    Article  PubMed  Google Scholar 

  53. Turkbey, B. et al. Prostate cancer: value of multiparametric MR imaging at 3 T for detection--histopathologic correlation. Radiology 255, 89–99 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wang, L. et al. Assessment of biologic aggressiveness of prostate cancer: correlation of MR signal intensity with Gleason grade after radical prostatectomy. Radiology 246, 168–176 (2008).

    Article  PubMed  Google Scholar 

  55. Woodfield, C. A. et al. Diffusion-weighted MRI of peripheral zone prostate cancer: comparison of tumor apparent diffusion coefficient with Gleason score and percentage of tumor on core biopsy. AJR Am. J. Roentgenol. 194, W316–W322 (2010).

    Article  PubMed  Google Scholar 

  56. Verma, S. et al. Assessment of aggressiveness of prostate cancer: correlation of apparent diffusion coefficient with histologic grade after radical prostatectomy. AJR Am. J. Roentgenol. 196, 374–381 (2011).

    Article  PubMed  Google Scholar 

  57. Oto, A. et al. Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: correlation of quantitative MR parameters with Gleason score and tumor angiogenesis. AJR Am. J. Roentgenol. 197, 1382–1390 (2011).

    Article  PubMed  Google Scholar 

  58. Hambrock, T. et al. Relationship between apparent diffusion coefficients at 3.0-T MR imaging and Gleason grade in peripheral zone prostate cancer. Radiology 259, 453–461 (2011).

    Article  PubMed  Google Scholar 

  59. Giles, S. L. et al. Apparent diffusion coefficient as a predictive biomarker of prostate cancer progression: value of fast and slow diffusion components. AJR Am. J. Roentgenol. 196, 586–591 (2011).

    Article  PubMed  Google Scholar 

  60. Zakian, K. L. et al. Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology 234, 804–814 (2005).

    Article  PubMed  Google Scholar 

  61. Franiel, T., Hamm, B. & Hricak, H. Dynamic contrast-enhanced magnetic resonance imaging and pharmacokinetic models in prostate cancer. Eur. Radiol. 21, 616–626 (2011).

    Article  PubMed  Google Scholar 

  62. Rouvière, O. et al. Characterization of time-enhancement curves of benign and malignant prostate tissue at dynamic MR imaging. Eur. Radiol. 13, 931–942 (2003).

    PubMed  Google Scholar 

  63. Hambrock, T. et al. Prospective assessment of prostate cancer aggressiveness using 3-T diffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort. Eur. Urol. 61, 177–184 (2012).

    Article  PubMed  Google Scholar 

  64. Rouvière, O. et al. Recurrent prostate cancer after external beam radiotherapy: value of contrast-enhanced dynamic MRI in localizing intraprostatic tumor--correlation with biopsy findings. Urology 63, 922–927 (2004).

    Article  PubMed  Google Scholar 

  65. Rouviere, O., Vitry, T. & Lyonnet, D. Imaging of prostate cancer local recurrences: why and how? Eur. Radiol. 20, 1254–1266 (2010).

    Article  PubMed  Google Scholar 

  66. Haider, M. A. et al. Dynamic contrast-enhanced magnetic resonance imaging for localization of recurrent prostate cancer after external beam radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 70, 425–430 (2008).

    Article  PubMed  Google Scholar 

  67. Rouvière, O. et al. Is it possible to model the risk of malignancy of focal abnormalities found at prostate multiparametric MRI? Eur. Radiol. 22, 1149–1157 (2012).

    Article  PubMed  Google Scholar 

  68. Heidenreich, A. Consensus criteria for the use of magnetic resonance imaging in the diagnosis and staging of prostate cancer: not ready for routine use. Eur. Urol. 59, 495–497 (2011).

    Article  PubMed  Google Scholar 

  69. Dickinson, L. et al. Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting. Eur. Urol. 59, 477–494 (2011).

    Article  PubMed  Google Scholar 

  70. Barentsz, J. O. et al. ESUR prostate MR guidelines 2012. Eur. Radiol. 22, 746–757 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Niaf, E., Rouvière, O., Mege-Lechevallier, F., Bratan, F. & Lartizien, C. Computer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRI. Phys. Med. Biol. 57, 3833–3851 (2012).

    Article  PubMed  Google Scholar 

  72. Artan, Y. et al. Prostate cancer localization with multispectral MRI using cost-sensitive support vector machines and conditional random fields. IEEE Trans. Image Process. 19, 2444–2455 (2010).

    Article  PubMed  Google Scholar 

  73. Puech, P. et al. Computer-assisted diagnosis of prostate cancer using DCE-MRI data: implementation and preliminary results. Int. J. Comput. Assist. Radiol. Surg. 4, 1–10 (2009).

    Article  PubMed  Google Scholar 

  74. Jager, G. J. et al. Local staging of prostate cancer with endorectal MR imaging: correlation with histopathology. AJR Am. J. Roentgenol. 166, 845–852 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Langer, D. L. et al. Intermixed normal tissue within prostate cancer: effect on MR imaging measurements of apparent diffusion coefficient and T2--sparse versus dense cancers. Radiology 249, 900–908 (2008).

    Article  PubMed  Google Scholar 

  76. Rosenkrantz, A. B., Mendrinos, S., Babb, J. S. & Taneja, S. S. Prostate cancer foci detected on multiparametric magnetic resonance imaging are histologically distinct from those not detected. J. Urol. 187, 2032–2038 (2012).

    Article  PubMed  Google Scholar 

  77. Onik, G., Miessau, M. & Bostwick, D. G. Three-dimensional prostate mapping biopsy has a potentially significant impact on prostate cancer management. J. Clin. Oncol. 27, 4321–4326 (2009).

    Article  PubMed  Google Scholar 

  78. Ukimura, O. et al. 3-Dimensional elastic registration system of prostate biopsy location by real-time 3-dimensional transrectal ultrasound guidance with magnetic resonance/transrectal ultrasound image fusion. J. Urol. 187, 1080–1086 (2012).

    Article  PubMed  Google Scholar 

  79. Pinto, P. A. et al. Magnetic resonance imaging/ultrasound fusion guided prostate biopsy improves cancer detection following transrectal ultrasound biopsy and correlates with multiparametric magnetic resonance imaging. J. Urol. 186, 1281–1285 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rouvière, O. et al. MRI appearance of prostate following transrectal HIFU ablation of localized cancer. Eur. Urol. 40, 265–274 (2001).

    Article  PubMed  Google Scholar 

  81. Rouvière, O. et al. Prostate cancer ablation with transrectal high-intensity focused ultrasound: assessment of tissue destruction with contrast-enhanced US. Radiology 259, 583–591 (2011).

    Article  PubMed  Google Scholar 

  82. Rouvière, O. et al. Prostate cancer transrectal HIFU ablation: detection of local recurrences using T2-weighted and dynamic contrast-enhanced MRI. Eur. Radiol. 20, 48–55 (2010).

    Article  PubMed  Google Scholar 

  83. Riviere, J. et al. Salvage radiotherapy after high-intensity focussed ultrasound for recurrent localised prostate cancer. Eur. Urol. 58, 567–573 (2010).

    Article  PubMed  Google Scholar 

  84. Stolzenburg, J. U. et al. Salvage laparoscopic extraperitoneal radical prostatectomy after failed high-intensity focused ultrasound and radiotherapy for localized prostate cancer. Urology 70, 956–960 (2007).

    Article  PubMed  Google Scholar 

  85. Siddiqui, K. et al. MRI-guided transurethral ultrasound therapy of the prostate gland using real-time thermal mapping: initial studies. Urology 76, 1506–1511 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Andrew Fowler for editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article and contributed to the discussion of the content. O. Rouvière contributed to the writing and editing the manuscript before submission. A. Gelet also contributed to the writing and J. Y. Chapelon contributed to editing the manuscript before submission.

Corresponding author

Correspondence to Jean-Yves Chapelon.

Ethics declarations

Competing interests

A. Gelet declares he is a consultant who also receives grant support from EDAP TMS. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rouvière, O., Gelet, A., Crouzet, S. et al. Prostate focused ultrasound focal therapy—imaging for the future. Nat Rev Clin Oncol 9, 721–727 (2012). https://doi.org/10.1038/nrclinonc.2012.136

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2012.136

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer