Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Implications of personalized medicine—perspective from a cancer center

Abstract

Three advances are dramatically changing the landscape of oncology. First, hundreds of drugs are available that inhibit targets involved in oncogenesis. Second, efforts to reclassify malignant diseases are expanding the number of orphan molecular diseases. Third, the implementation of high-throughput technologies will allow risk of relapse prediction and drug sensitivity. Patients predicted to relapse will be referred to comprehensive cancer centers where new drugs will be tested. It is anticipated that a high number of small, biology-driven clinical trials will report high sensitivity to targeted agents in rare biologically defined diseases. Drug registration and biomarker analysis needs to be revisited to avoid large phase III trials with control arms. The use of high-throughput technologies will lead to the development of virtual cells. These considerations highlight the need for developing a consortium of comprehensive cancer centers to run clinical trials in rare, molecularly-defined populations, and implement high-throughput technologies for daily practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular predictors of cancer death: breast cancer illustration.
Figure 2: Short-term future of drug development in the era of molecular medicine.
Figure 3: Clinical trials in the era of molecular medicine: test the predictor, not the drug.
Figure 4: Clinical developments for different stage cancers.

Similar content being viewed by others

References

  1. Ator, M. A., Mallamo, J. P. & Williams, M. Overview of drug discovery and development. Current Protocols in Pharmacology [online], (2006).

  2. Taylor, R., Davis, P. & Boyages, J. Long-term survival of women with breast cancer in New South Wales. Eur. J. Cancer 39, 215–222 (2003).

    Article  PubMed  Google Scholar 

  3. Desmedt, C., Ruíz-García, E. & André, F. Gene expression predictors in breast cancer: current status, limitations and perspectives. Eur. J. Cancer 44, 2714–2720 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Hatzis, C. et al. Genomic predictors of pathologic response to preoperative chemotherapy for triple-negative and ER-positive/HER2-negative breast cancers [abstract]. J. Clin. Oncol. 26 (May 20 Suppl.), a571 (2008).

    Article  Google Scholar 

  5. Curigliano, G. et al. Clinical relevance of HER2 overexpression/amplification in patients with small tumor size and node-negative breast cancer. J. Clin. Oncol. 27, 5693–5699 (2009).

    Article  PubMed  Google Scholar 

  6. Johnson, B. E. New horizons in the biology and treatment of lung cancer. American Society of Clinical Oncology [online], (2009).

    Google Scholar 

  7. Samuels, Y. et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 304, 554 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Herbst, R. S., Heymach, J. V. & Lippman, S. M. Lung cancer. N. Engl. J. Med. 359, 1367–1380 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Kurian, A. W. BRCA1 and BRCA2 mutations across race and ethnicity: distribution and clinical implications. Curr. Opin. Obstet. Gynecol. 22, 72–78 (2010).

    Article  PubMed  Google Scholar 

  10. Dadzie, O. E. et al. RAS and RAF mutations in banal melanocytic aggregates contiguous with primary cutaneous melanoma: clues to melanomagenesis. Br. J. Dermatol. 160, 368–375 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Williams, J. A. Hedgehog signaling pathway as a target for therapeutic intervention in basal cell carcinoma. Drug News Perspect. 16, 657–662 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Elbauomy Elsheikh, S. et al. FGFR1 amplification in breast carcinomas: a chromogenic in situ hybridisation analysis. Breast Cancer Res. 9, R23 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Carey, L. A. et al. TBCRC 001: EGFR inhibition with cetuximab added to carboplatin in metastatic triple-negative (basal-like) breast cancer [abstract]. J. Clin. Oncol. 26 (May 20 Suppl.), a1009 (2008).

    Article  Google Scholar 

  14. Project CREMEC. Cancéropôle [online], (2010).

  15. Kwak, E. L. et al. Clinical activity observed in a phase I dose escalation trial of an oral c-met and ALK inhibitor, PF-02341066 [abstract]. J. Clin. Oncol. 27 (Suppl.), a3509 (2009).

    Google Scholar 

  16. Rosell, R., Viteri, S., Molina, M. A., Benlloch, S. & Taron, M. Epidermal growth factor receptor tyrosine kinase inhibitors as first-line treatment in advanced nonsmall-cell lung cancer. Curr. Opin. Oncol. 22, 112–120 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Flaherty, I. et al. Phase I study of PLX4032: Proof of concept for V600E BRAF mutation as a therapeutic target in human cancer. J. Clin. Oncol. 27 (Suppl.), a9000 (2009).

    Google Scholar 

  18. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Pao, W. et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl Acad. Sci. USA 101, 13306–13311 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Engelman, J. A. & Jänne, P. A. Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin. Cancer Res. 14, 2895–2899 (2008).

    Article  PubMed  Google Scholar 

  22. Nguyen, K. S., Kobayashi, S. & Costa, D. B. Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancers dependent on the epidermal growth factor receptor pathway. Clin. Lung Cancer 10, 281–289 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sáez, R. et al. p95HER-2 predicts worse outcome in patients with HER-2-positive breast cancer. Clin. Cancer Res. 12, 424–431 (2006).

    Article  PubMed  Google Scholar 

  24. Kataoka, Y. et al. Association between gain-of-function mutations in PIK3CA and resistance to HER2-targeted agents in HER2-amplified breast cancer cell lines. Ann. Oncol. 21, 255–262 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Linardou, H. et al. Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol. 9, 962–972 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Campone, M. et al. Everolimus plus weekly paclitaxel and trastuzumab in patients (pts) with HER-2+ metastatic breast cancer (MBC) with prior resistance to trastuzumab: a phase I clinical trial [abstract]. 45th Annual Meeting ASCO Breast Cancer Symposium a218 (2009).

    Google Scholar 

  27. Stemke-Hale, K. et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 68, 6084–6091 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. INVS Institut de Veille Sanitaire [online], (2010).

  29. De La Cruz, J. et al. High resolution oligonucleotide array-CGH and hot spot mutations to select patients for targeted therapies [abstract]. Cancer Res. 69, a5067 (2009).

    Article  Google Scholar 

  30. Friend, S. H. Emerging approaches in molecular profiling affecting oncology drug discovery. Cold Spring Harb. Symp. Quant. Biol. 70, 445–448 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Gong, Y. et al. Determination of oestrogen-receptor status and ERBB2 status of breast carcinoma: a gene-expression profiling study. Lancet Oncol. 8, 203–211 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Andre, F. et al. Molecular characterization of breast cancer with high-resolution oligonucleotide comparative genomic hybridization array. Clin. Cancer Res. 15, 441–451 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Metzker, M. L. Sequencing technologies—the next generation. Nat. Rev. Genet. 11, 31–46 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Strausberg, R. L. & Simpson, A. J. Whole-genome cancer analysis as an approach to deeper understanding of tumour biology. Br. J. Cancer 102, 243–248 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Futreal, P. A. et al. A census of human cancer genes. Nat. Rev. Cancer 4, 177–183 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ley, T. J. et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456, 66–72 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shah, S. P. et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461, 809–813 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Thomas, R. K. et al. Detection of oncogenic mutations in the EGFR gene in lung adenocarcinoma with differential sensitivity to EGFR tyrosine kinase inhibitors. Cold Spring Harb. Symp. Quant. Biol. 70, 73–81 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Maher, C. A. et al. Transcriptome sequencing to detect gene fusions in cancer. Nature 458, 97–101 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao, Q. et al. Transcriptome-guided characterization of genomic rearrangements in a breast cancer cell line. Proc. Natl Acad. Sci. USA 106, 1886–1891 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Leary, R. J. et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci. Transl. Med. 2, 20ra14 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tuch, B. B. et al. Tumor transcriptome sequencing reveals allelic expression imbalances associated with copy number alterations. PLoS ONE 5, e9317 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Soverini, S. et al. ABL mutations in late chronic phase chronic myeloid leukemia patients with up-front cytogenetic resistance to imatinib are associated with a greater likelihood of progression to blast crisis and shorter survival: a study by the GIMEMA Working Party on Chronic Myeloid Leukemia. J. Clin. Oncol. 23, 4100–4109 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Robinson, from Complete Medical Communications, for help with figure preparation and English language editing, which was funded by the Institute Gustave Roussy.

Author information

Authors and Affiliations

Authors

Contributions

T. Tursz, F. Andre, V. Lazar, L. Lacroix and J.-C. Soria all contributed to researching the data for this article, to discussions relating to the article content, writing and reviewing/editing of the manuscript.

Corresponding author

Correspondence to Fabrice Andre.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tursz, T., Andre, F., Lazar, V. et al. Implications of personalized medicine—perspective from a cancer center. Nat Rev Clin Oncol 8, 177–183 (2011). https://doi.org/10.1038/nrclinonc.2010.222

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2010.222

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer