Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Early identification of risk factors for sudden cardiac death

Abstract

Sudden cardiac death (SCD) is a global health issue. The unexpected nature of this devastating condition compounds the urgency of discovering methods for early detection of risk, which will lead to more effective prevention. However, the complex and dynamic nature of SCD continues to present a considerable challenge for the early identification of risk factors. Measurement of the left ventricular ejection fraction (LVEF) is currently the only major risk factor used for stratification in clinical practice. Severely decreased LVEF is likely to manifest late in the natural history of SCD, however, and may only affect a small subgroup of patients who will suffer SCD. A growing body of literature describes novel risk markers and predictors of SCD, such as high-risk phenotypes, genetic variants and biomarkers. This Review will discuss the potential utility of these markers as early identifiers of risk, and suggests a framework for the conduct of future studies for the discovery, validation, and deployment of novel SCD risk factors.

Key Points

  • Sudden cardiac death (SCD) results in 200,000–250,000 deaths in the US every year

  • The left ventricular ejection fraction is currently the only clinical variable used for SCD risk stratification

  • Few risk factors are available owing to the complexity of SCD and its asymptomatic nature; further research is needed to find novel markers that can identify high-risk individuals

  • Phenotypes associated with SCD include left ventricular hypertrophy, prolonged QTc interval, and increased resting heart rate; a genetic susceptibility for SCD also exists

  • Novel risk markers of SCD identified in the blood and from molecular imaging techniques will be used for SCD risk stratification in the future

  • A risk score for early prediction of SCD that consists of a panel of markers will be more effective than any individual marker

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Contribution of severe LV systolic dysfunction to SCD in the general population.
Figure 2: Risk factors associated with SCD in patients with CAD.
Figure 3: Electrocardiographic findings and manifestation of arrhythmia in the Brugada syndrome.
Figure 4: Schematic of genome-wide association study design.
Figure 5: Survival curves (free of SCD) stratified by the protective rs3864180 genotype.
Figure 6: Kaplan–Meier SCD-free curves after cardiac metaiodobenzylguanidine imaging.
Figure 7: Development of an early detection risk score for SCD.

Similar content being viewed by others

References

  1. Chugh, S. S. et al. Epidemiology of sudden cardiac death: clinical and research implications. Prog. Cardiovasc. Dis. 51, 213–228 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nichol, G. et al. Regional variation in out-of-hospital cardiac arrest incidence and outcome. JAMA 300, 1423–1431 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chugh, S. S. et al. Current burden of sudden cardiac death: multiple source surveillance versus retrospective death certificate-based review in a large U.S. community. J. Am. Coll. Cardiol. 44, 1268–1275 (2004).

    Article  PubMed  Google Scholar 

  4. Zipes, D. P. & Wellens, H. J. Sudden cardiac death. Circulation 98, 2334–2351 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Huikuri, H.V., Castellanos, A. & Myerburg, R. J. Sudden death due to cardiac arrhythmias. N. Engl. J. Med. 345, 1473–1482 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Goldenberg, I., Zareba, W. & Moss, A. J. Long QT Syndrome. Curr. Probl. Cardiol. 33, 629–694 (2008).

    Article  PubMed  Google Scholar 

  7. Maron, B. J. Contemporary insights and strategies for risk stratification and prevention of sudden death in hypertrophic cardiomyopathy. Circulation 121, 445–456 (2010).

    Article  PubMed  Google Scholar 

  8. Bardy, G. H. et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N. Engl. J. Med. 352, 225–237 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Moss, A. J. et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N. Engl. J. Med. 346, 877–883 (2002).

    Article  PubMed  Google Scholar 

  10. Myerburg, R. J., Mitrani, R., Interian, A., Jr & Castellanos, A. Interpretation of outcomes of antiarrhythmic clinical trials: design features and population impact. Circulation 97, 1514–1521 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. de Vreede-Swagemakers, J. J. et al. Out-of-hospital cardiac arrest in the 1990s: a population-based study in the Maastricht area on incidence, characteristics and survival. J. Am. Coll. Cardiol. 30, 1500–1505 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Gorgels, A. P., Gijsbers, C., de Vreede-Swagemakers, J., Lousberg, A. & Wellens, H. J. Out-of-hospital cardiac arrest—the relevance of heart failure. The Maastricht Circulatory Arrest Registry. Eur. Heart J. 24, 1204–1209 (2003).

    Article  PubMed  Google Scholar 

  13. Stecker, E. C. et al. Population-based analysis of sudden cardiac death with and without left ventricular systolic dysfunction: two-year findings from the Oregon Sudden Unexpected Death Study. J. Am. Coll. Cardiol. 47, 1161–1166 (2006).

    Article  PubMed  Google Scholar 

  14. Goldberger, J. J. et al. American Heart Association/American College of Cardiology Foundation/Heart Rhythm Society scientific statement on noninvasive risk stratification techniques for identifying patients at risk for sudden cardiac death: a scientific statement from the American Heart Association Council on Clinical Cardiology Committee on Electrocardiography and Arrhythmias and Council on Epidemiology and Prevention. Circulation 118, 1497–1518 (2008).

    Article  PubMed  Google Scholar 

  15. Camm, A. J. et al. Mortality in patients after a recent myocardial infarction: a randomized, placebo-controlled trial of azimilide using heart rate variability for risk stratification. Circulation 109, 990–996 (2004).

    Article  PubMed  Google Scholar 

  16. La Rovere, M. T. et al. Baroreflex sensitivity and heart rate variability in the identification of patients at risk for life-threatening arrhythmias: implications for clinical trials. Circulation 103, 2072–2077 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Galinier, M. et al. Prognostic value of late potentials in patients with congestive heart failure. Eur. Heart J. 17, 264–271 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Silverman, M. E. et al. Prognostic value of the signal-averaged electrocardiogram and a prolonged QRS in ischemic and nonischemic cardiomyopathy. Am. J. Cardiol. 75, 460–464 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Costantini, O. et al. The ABCD (Alternans Before Cardioverter Defibrillator) Trial: strategies using T-wave alternans to improve efficiency of sudden cardiac death prevention. J. Am. Coll. Cardiol. 53, 471–479 (2009).

    Article  PubMed  Google Scholar 

  20. Gold, M. R. et al. Role of microvolt T-wave alternans in assessment of arrhythmia vulnerability among patients with heart failure and systolic dysfunction: primary results from the T-wave alternans sudden cardiac death in heart failure trial substudy. Circulation 118, 2022–2028 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rosenbaum, D. S. et al. Electrical alternans and vulnerability to ventricular arrhythmias. N. Engl. J. Med. 330, 235–241 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Haider, A. W., Larson, M. G., Benjamin, E. J. & Levy, D. Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. J. Am. Coll. Cardiol. 32, 1454–1459 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Straus, S. M. et al. Prolonged QTc interval and risk of sudden cardiac death in a population of older adults. J. Am. Coll. Cardiol. 47, 362–367 (2006).

    Article  PubMed  Google Scholar 

  24. Callans, D. J., Menz, V., Schwartzman, D., Gottlieb, C. D. & Marchlinski, F. E. Repetitive monomorphic tachycardia from the left ventricular outflow tract: electrocardiographic patterns consistent with a left ventricular site of origin. J. Am. Coll. Cardiol. 29, 1023–1027 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Chugh, S. S. et al. Population-based analysis of sudden death in children: The Oregon Sudden Unexpected Death Study. Heart Rhythm 6, 1618–1622 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chugh, S. S. et al. Determinants of prolonged QT interval and their contribution to sudden death risk in coronary artery disease: the Oregon Sudden Unexpected Death Study. Circulation 119, 663–670 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chugh, S. S. et al. A community-based evaluation of sudden death associated with therapeutic levels of methadone. Am. J. Med. 121, 66–71 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chugh, S. S. et al. Women have a lower prevalence of structural heart disease as a precursor to sudden cardiac arrest: The Ore-SUDS (Oregon Sudden Unexpected Death Study). J. Am. Coll. Cardiol. 54, 2006–2011 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Reddy, P. R. et al. Physical activity as a trigger of sudden cardiac arrest: the Oregon Sudden Unexpected Death Study. Int. J. Cardiol. 131, 345–349 (2009).

    Article  PubMed  Google Scholar 

  30. Reinier, K. et al. Incidence of sudden cardiac arrest is higher in areas of low socioeconomic status: a prospective two year study in a large United States community. Resuscitation 70, 186–192 (2006).

    Article  PubMed  Google Scholar 

  31. Stecker, E. C. et al. Allelic variants of SCN5A and risk of sudden cardiac arrest in patients with coronary artery disease. Heart Rhythm 3, 697–700 (2006).

    Article  PubMed  Google Scholar 

  32. Lemmert, M. E. et al. Electrocardiographic factors playing a role in ischemic ventricular fibrillation in ST elevation myocardial infarction are related to the culprit artery. Heart Rhythm 5, 71–78 (2008).

    Article  PubMed  Google Scholar 

  33. Das, M. K. & Zipes, D. P. Fragmented QRS: a predictor of mortality and sudden cardiac death. Heart Rhythm 6, S8–S14 (2009).

    Article  PubMed  Google Scholar 

  34. Dyer, A. R. et al. Heart rate as a prognostic factor for coronary heart disease and mortality: findings in three Chicago epidemiologic studies. Am. J. Epidemiol. 112, 736–749 (1980).

    Article  CAS  PubMed  Google Scholar 

  35. Jouven, X., Zureik, M., Desnos, M., Guérot, C. & Ducimetière, P. Resting heart rate as a predictive risk factor for sudden death in middle-aged men. Cardiovasc. Res. 50, 373–378 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Kannel, W. B., Kannel, C., Paffenbarger, R. S., Jr & Cupples, L. A. Heart rate and cardiovascular mortality: the Framingham Study. Am. Heart J. 113, 1489–1494 (1987).

    Article  CAS  PubMed  Google Scholar 

  37. Shaper, A. G., Wannamethee, G., Macfarlane, P. W. & Walker, M. Heart rate, ischaemic heart disease, and sudden cardiac death in middle-aged British men. Br. Heart J. 70, 49–55 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jouven, X. et al. Excessive heart rate increase during mild mental stress in preparation for exercise predicts sudden death in the general population. Eur. Heart J. 30, 1703–1710 (2009).

    Article  PubMed  Google Scholar 

  39. Albert, C. M. et al. Prospective study of sudden cardiac death among women in the United States. Circulation 107, 2096–2101 (2003).

    Article  PubMed  Google Scholar 

  40. Balkau, B., Jouven, X., Ducimetière, P. & Eschwege, E. Diabetes as a risk factor for sudden death. Lancet 354, 1968–1969 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Jouven, X. et al. Diabetes, glucose level, and risk of sudden cardiac death. Eur. Heart J. 26, 2142–2147 (2005).

    Article  PubMed  Google Scholar 

  42. Friedlander, Y. et al. Sudden death and myocardial infarction in first degree relatives as predictors of primary cardiac arrest. Atherosclerosis 162, 211–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Friedlander, Y. et al. Family history as a risk factor for primary cardiac arrest. Circulation 97, 155–160 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Jouven, X., Desnos, M., Guerot, C. & Ducimetière, P. Predicting sudden death in the population: the Paris Prospective Study I. Circulation 99, 1978–1983 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Dekker, L. R. et al. Familial sudden death is an important risk factor for primary ventricular fibrillation: a case-control study in acute myocardial infarction patients. Circulation 114, 1140–1145 (2006).

    Article  PubMed  Google Scholar 

  46. Kaikkonen, K. S., Kortelainen, M. L., Linna, E. & Huikuri, H. V. Family history and the risk of sudden cardiac death as a manifestation of an acute coronary event. Circulation 114, 1462–1467 (2006).

    Article  PubMed  Google Scholar 

  47. Arking, D. E., Chugh, S. S., Chakravarti, A. & Spooner, P. M. Genomics in sudden cardiac death. Circ. Res. 94, 712–723 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Prutkin, J. M. & Sotoodehnia, N. Genetics of sudden cardiac arrest. Prog. Cardiovasc. Dis. 50, 390–403 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Wellens, H. J., de Vreede, J. & Gorgels, A. P. Sudden cardiac death. How to reduce the number of victims? Eur. Heart J. 16 (Suppl. G), 7–9 (1995).

    Article  PubMed  Google Scholar 

  50. Moss, A. J. & Robinson, J. Clinical features of the idiopathic long QT syndrome. Circulation 85, I140–I144 (1992).

    CAS  PubMed  Google Scholar 

  51. Schwartz, P. J. & Locati, E. The idiopathic long QT syndrome: pathogenetic mechanisms and therapy. Eur. Heart J. 6 (Suppl. D), 103–114 (1985).

    Article  PubMed  Google Scholar 

  52. Chiang, C. E. & Roden, D. M. The long QT syndromes: genetic basis and clinical implications. J. Am. Coll. Cardiol. 36, 1–12 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Keating, M. T. & Sanguinetti, M. C. Molecular genetic insights into cardiovascular disease. Science 272, 681–685 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Moss, A. J. et al. ECG T-wave patterns in genetically distinct forms of the hereditary long QT syndrome. Circulation 92, 2929–2934 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Schwartz, P. J. et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation 103, 89–95 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Kaufman, E. S. Mechanisms and clinical management of inherited channelopathies: long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, and short QT syndrome. Heart Rhythm 6, S51–S55 (2009).

    Article  PubMed  Google Scholar 

  57. Antzelevitch, C. Brugada syndrome. Pacing Clin. Electrophysiol. 29, 1130–1159 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Brugada, P. & Brugada, J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J. Am. Coll. Cardiol. 20, 1391–1396 (1992).

    Article  CAS  PubMed  Google Scholar 

  59. Gussak, I., Antzelevitch, C., Bjerregaard, P., Towbin, J. A. & Chaitman, B. R. The Brugada syndrome: clinical, electrophysiologic and genetic aspects. J. Am. Coll. Cardiol. 33, 5–15 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Crotti, L. et al. NOS1AP is a genetic modifier of the long-QT syndrome. Circulation 120, 1657–1663 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Eijgelsheim, M. et al. Genetic variation in NOS1AP is associated with sudden cardiac death: evidence from the Rotterdam Study. Hum. Mol. Genet. 18, 4213–4218 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kao, W. H. et al. Genetic variations in nitric oxide synthase 1 adaptor protein are associated with sudden cardiac death in US white community-based populations. Circulation 119, 940–951 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Arking, D. E. et al. Genome-wide association study identifies GPC5 as a novel genetic locus protective against sudden cardiac arrest. PLoS ONE 5, e9879 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Esko, J. D. & Selleck, S. B. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435–471 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Rosenberg, R. D., Shworak, N. W., Liu, J., Schwartz, J. J. & Zhang, L. Heparan sulfate proteoglycans of the cardiovascular system. Specific structures emerge but how is synthesis regulated? J. Clin. Invest. 100, S67–S75 (1997).

    CAS  PubMed  Google Scholar 

  66. Pilia, G. et al. Mutations in GPC3, a glypican gene, cause the Simpson–Golabi–Behmel overgrowth syndrome. Nat. Genet. 12, 241–247 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Veugelers, M. et al. GPC4, the gene for human K-glypican, flanks GPC3 on xq26: deletion of the GPC3–GPC4 gene cluster in one family with Simpson–Golabi–Behmel syndrome. Genomics 53, 1–11 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Campos-Xavier, A. B. et al. Mutations in the heparan-sulfate proteoglycan glypican 6 (GPC6) impair endochondral ossification and cause recessive omodysplasia. Am. J. Hum. Genet. 84, 760–770 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Guttmacher, A. E., McGuire, A. L., Ponder, B. & Stefansson, K. Personalized genomic information: preparing for the future of genetic medicine. Nat. Rev. Genet. 11, 161–165 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Albert, C. M., Ma, J., Rifai, N., Stampfer, M. J. & Ridker, P. M. Prospective study of C-reactive protein, homocysteine, and plasma lipid levels as predictors of sudden cardiac death. Circulation 105, 2595–2599 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Korngold, E. C. et al. Amino-terminal pro-B-type natriuretic peptide and high-sensitivity C-reactive protein as predictors of sudden cardiac death among women. Circulation 119, 2868–2876 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chugh, S. S. & Reinier, K. Predicting sudden death in the general population: another step, N terminal B-type natriuretic factor levels. Circulation 119, 2863–2864 (2009).

    Article  PubMed  Google Scholar 

  73. Jouven, X., Charles, M. A., Desnos, M. & Ducimetière, P. Circulating nonesterified fatty acid level as a predictive risk factor for sudden death in the population. Circulation 104, 756–761 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Lemaitre, R. N., King, I. B., Mozaffarian, D., Sotoodehnia, N. & Siscovick, D. S. Trans-fatty acids and sudden cardiac death. Atheroscler. Suppl. 7, 13–15 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Lemaitre, R. N. et al. Cell membrane trans-fatty acids and the risk of primary cardiac arrest. Circulation 105, 697–701 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Empana, J. P. et al. Clinical depression and risk of out-of-hospital cardiac arrest. Arch. Intern. Med. 166, 195–200 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Katz, A. M. Trans-fatty acids and sudden cardiac death. Circulation 105, 669–671 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Marfella, R. et al. Elevated plasma fatty acid concentrations prolong cardiac repolarization in healthy subjects. Am. J. Clin. Nutr. 73, 27–30 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. John, B. T. et al. Global remodeling of the ventricular interstitium in idiopathic myocardial fibrosis and sudden cardiac death. Heart Rhythm 1, 141–149 (2004).

    Article  PubMed  Google Scholar 

  80. Yan, A. T. et al. Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation 114, 32–39 (2006).

    Article  PubMed  Google Scholar 

  81. Wu, K. C. et al. Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in nonischemic cardiomyopathy. J. Am. Coll. Cardiol. 51, 2414–2421 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kehr, E., Sono, M., Chugh, S. S. & Jerosch-Herold, M. Gadolinium-enhanced magnetic resonance imaging for detection and quantification of fibrosis in human myocardium in vitro. Int. J. Cardiovasc. Imaging 24, 61–68 (2008).

    Article  PubMed  Google Scholar 

  83. Sosnovik, D. E. et al. Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical nanoparticle. Magn. Reson. Med. 54, 718–724 (2005).

    Article  PubMed  Google Scholar 

  84. Zipes, D. P. et al. Sudden cardiac death. Neural–cardiac interactions. Circulation 76, I202–I207 (1987).

    CAS  PubMed  Google Scholar 

  85. Tamaki, S. et al. Cardiac iodine-123 metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction: results from a comparative study with signal-averaged electrocardiogram, heart rate variability, and QT dispersion. J. Am. Coll. Cardiol. 53, 426–435 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Mazzadi, A. N. et al. Muscarinic receptor upregulation in patients with myocardial infarction: a new paradigm. Circ. Cardiovasc. Imaging 2, 365–372 (2009).

    Article  PubMed  Google Scholar 

  87. Spooner, P. M. et al. Sudden cardiac death, genes, and arrhythmogenesis: consideration of new population and mechanistic approaches from a national heart, lung, and blood institute workshop, part I. Circulation 103, 2361–2364 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Spooner, P. M. et al. Sudden cardiac death, genes, and arrhythmogenesis: consideration of new population and mechanistic approaches from a national heart, lung, and blood institute workshop, part II. Circulation 103, 2447–2452 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Zipes, D. P. Sudden cardiac death. Future approaches. Circulation 85, I160–I166 (1992).

    CAS  PubMed  Google Scholar 

  90. Myerburg, R. J. Scientific gaps in the prediction and prevention of sudden cardiac death. J. Cardiovasc. Electrophysiol. 13, 709–723 (2002).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This manuscript was funded, in part, by the National Heart Lung and Blood Institute (R01HL088416). The author is indebted to Drs. Kyndaron Reinier and Eric C. Stecker for their critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chugh, S. Early identification of risk factors for sudden cardiac death. Nat Rev Cardiol 7, 318–326 (2010). https://doi.org/10.1038/nrcardio.2010.52

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2010.52

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing