Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics and genomics of arrhythmic risk: current and future strategies to prevent sudden cardiac death

Abstract

A genetic risk of sudden cardiac arrest and sudden death due to an arrhythmic cause, known as sudden cardiac death (SCD), has become apparent from epidemiological studies in the general population and in patients with ischaemic heart disease. However, genetic susceptibility to sudden death is greatest in young people and is associated with uncommon, monogenic forms of heart disease. Despite comprehensive pathology and genetic evaluations, SCD remains unexplained in a proportion of young people and is termed sudden arrhythmic death syndrome, which poses challenges to the identification of relatives from affected families who might be at risk of SCD. In this Review, we assess the current understanding of the epidemiology and causes of SCD and evaluate both the monogenic and the polygenic contributions to the risk of SCD in the young and SCD associated with drug therapy. Finally, we analyse the potential clinical role of genomic testing in the prevention of SCD in the general population.

Key points

  • Sudden cardiac death (SCD) is a leading cause of death in Western countries, and a genetic risk of SCD is well established.

  • Rare variants in genes encoding proteins linked with cardiac structure or electrical activity have been associated with the risk of SCD in the young (aged <35 years).

  • Common genetic variants in the general population are increasingly recognized to contribute to the phenotypic expression of cardiac diseases and the risk of SCD.

  • A better understanding of the influence of genomic variation on the individual risk of SCD is needed to implement clinical strategies, such as polygenic risk scores, to predict and prevent SCD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Aetiology of unexpected SCD.
Fig. 2: Aetiology of unexpected SCA.
Fig. 3: Genetic variant frequency, effect size and classification.
Fig. 4: Genetic analysis approach to rare and common diseases.

Similar content being viewed by others

References

  1. Al-Khatib, S. M. et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardology/American Heart Association Task Force on Clinical Practice Guidelines and the Herat Rhythm Society. Circulation 138, e272–e391 (2018).

    PubMed  Google Scholar 

  2. Priori, S. G. et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur. Heart J. 36, 2793–2867 (2015).

    Article  PubMed  Google Scholar 

  3. Myerburg, R. J. & Castellanos, A. in Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine Ch. 42 (eds Zipes, D. P. et al.) 865–908 (Elsevier, 2005).

  4. Spooner, P. M. et al. Sudden cardiac death, genes, and arrhythmogenesis: consideration of new population and mechanistic approaches from a National Heart, Lung, and Blood Institute workshop, part I. Circulation 103, 2361–2364 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Priori, S. G. et al. Task Force on Sudden Cardiac Death of the European Society of Cardiology. Eur. Heart J. 22, 1374–1450 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Tseng, Z. H. et al. Prospective countywide surveillance and autopsy characterization of sudden cardiac death: POST SCD study. Circulation 137, 2689–2700 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bjune, T. et al. Post-mortem toxicology in young sudden cardiac death victims: a nationwide cohort study. Europace 20, 614–621 (2018).

    Article  PubMed  Google Scholar 

  8. Finocchiaro, G. et al. Obesity and sudden cardiac death in the young: clinical and pathological insights from a large national registry. Eur. J. Prev. Cardiol. 25, 395–401 (2018).

    Article  PubMed  Google Scholar 

  9. Spooner, P. M. Sudden cardiac death: influence of diabetes. Diabetes Obes. Metab. 10, 523–532 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Lynge, T. H. et al. Sudden cardiac death among persons with diabetes aged 1-49 years: a 10-year nationwide study of 14 294 deaths in Denmark. Eur. Heart J. 41, 2699–2706 (2020).

    Article  PubMed  Google Scholar 

  11. Yankelson, L. et al. Life-threatening events during endurance sports: is heat stroke more prevalent than arrhythmic death? J. Am. Coll. Cardiol. 64, 463–469 (2014).

    Article  PubMed  Google Scholar 

  12. Blom, M. T. et al. Improved survival after out-of-hospital cardiac arrest and use of automated external defibrillators. Circulation 130, 1868–1875 (2014).

    Article  PubMed  Google Scholar 

  13. Kong, M. H. et al. Systematic review of the incidence of sudden cardiac death in the United States. J. Am. Coll. Cardiol. 57, 794–801 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  14. De Vreede-Swagemakers, J. J. M. et al. Out-of-hospital cardiac arrest in the 1990s: a population-based study in the Maastricht area on incidence, characteristics and survival. J. Am. Coll. Cardiol. 30, 1500–1505 (1997).

    Article  PubMed  Google Scholar 

  15. Driscoll, D. J. & Edwards, W. D. Sudden unexpected death in children and adolescents. J. Am. Coll. Cardiol. 5, 118B–121B (1985).

    Article  CAS  PubMed  Google Scholar 

  16. Meyer, L. et al. Incidence, causes, and survival trends from cardiovascular-related sudden cardiac arrest in children and young adults 0 to 35 years of age: a 30-year review. Circulation 126, 1363–1372 (2012).

    Article  PubMed  Google Scholar 

  17. Ackerman, M., Atkins, D. L. & Triedman, J. K. Sudden cardiac death in the young. Circulation 133, 1006–1026 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Winkel, B. G. et al. Nationwide study of sudden cardiac death in persons aged 1-35 years. Eur. Heart J. 32, 983–990 (2011).

    Article  PubMed  Google Scholar 

  19. Bowker, T. J. et al. Sudden, unexpected cardiac or unexplained death in England: a national survey. QJM 96, 269–279 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Huikuri, H. V., Castellanos, A. & Myerburg, R. J. Sudden death due to cardiac arrhythmias. N. Engl. J. Med. 345, 1473–1482 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Bagnall, R. D. et al. A prospective study of sudden cardiac death among children and young adults. N. Engl. J. Med. 374, 2441–2452 (2016).

    Article  PubMed  Google Scholar 

  22. Priori, S. G. et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm 10, 1932–1963 (2013).

    Article  PubMed  Google Scholar 

  23. Friedlander, Y. et al. Family history as a risk factor for primary cardiac arrest. Circulation 97, 155–160 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Friedlander, Y. et al. Sudden death and myocardial infarction in first degree relatives as predictors of primary cardiac arrest. Atherosclerosis 162, 211–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Jouven, X., Desnos, M., Guerot, C. & Ducimetière, P. Predicting sudden death in the population: the Paris prospective study I. Circulation 99, 1978–1983 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Kaikkonen, K. S., Kortelainen, M. L., Linna, E. & Huikuri, H. V. Family history and the risk of sudden cardiac death as a manifestation of an acute coronary event. Circulation 114, 1462–1467 (2006).

    Article  PubMed  Google Scholar 

  27. Dekker, L. R. C. et al. Familial sudden death is an important risk factor for primary ventricular fibrillation: a case-control study in acute myocardial infarction patients. Circulation 114, 1140–1145 (2006).

    Article  PubMed  Google Scholar 

  28. Corrado, D., Basso, C. & Thiene, G. Sudden cardiac death in young people with apparently normal heart. Cardiovasc. Res. 50, 399–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Papadakis, M. et al. The magnitude of sudden cardiac death in the young: a death certificate-based review in England and Wales. Europace 11, 1353–1358 (2009).

    Article  PubMed  Google Scholar 

  30. Pilmer, C. M., Kirsh, J. A., Hildebrandt, D., Krahn, A. D. & Gow, R. M. Sudden cardiac death in children and adolescents between 1 and 19 years of age. Heart Rhythm 11, 239–245 (2014).

    Article  PubMed  Google Scholar 

  31. Lahrouchi, N. et al. The yield of postmortem genetic testing in sudden death cases with structural findings at autopsy. Eur. J. Hum. Genet. 28, 17–22 (2020).

    Article  PubMed  Google Scholar 

  32. Nunn, L. M. et al. Diagnostic yield of molecular autopsy in patients with sudden arrhythmic death syndrome using targeted exome sequencing. Europace 18, 888–896 (2016).

    Article  PubMed  Google Scholar 

  33. Kumar, S. et al. Familial cardiological and targeted genetic evaluation: low yield in sudden unexplained death and high yield in unexplained cardiac arrest syndromes. Heart Rhythm 10, 1653–1660 (2013).

    Article  PubMed  Google Scholar 

  34. Hansen, B. L. et al. Diagnostic yield in victims of sudden cardiac death and their relatives. Europace 22, 964–971 (2020).

    Article  PubMed  Google Scholar 

  35. Basso, C. et al. Guidelines for autopsy investigation of sudden cardiac death: 2017 update from the Association for European Cardiovascular Pathology. Virchows Arch. 471, 691–705 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. De Noronha, S. V. et al. The importance of specialist cardiac histopathological examination in the investigation of young sudden cardiac deaths. Europace 16, 899–907 (2014).

    Article  PubMed  Google Scholar 

  37. Stiles, M. K. et al. 2020 APHRS/HRS expert consensus statement on the investigation of decedents with sudden unexplained death and patients with sudden cardiac arrest, and of their families. Heart Rhythm 18, e1–e50 (2021).

    Article  PubMed  Google Scholar 

  38. Schwartz, P. J. et al. Inherited cardiac arrhythmias. Nat. Rev. Dis. Prim. 6, 58 (2020).

    Article  PubMed  Google Scholar 

  39. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Whiffin, N. et al. Using high-resolution variant frequencies to empower clinical genome interpretation. Genet. Med. 19, 1151–1158 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Behr, E. et al. Cardiological assessment of first-degree relatives in sudden arrhythmic death syndrome. Lancet 362, 1457–1459 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Behr, E. R. et al. Sudden arrhythmic death syndrome: familial evaluation identifies inheritable heart disease in the majority of families. Eur. Heart J. 29, 1670–1680 (2008).

    Article  PubMed  Google Scholar 

  43. Papadakis, M. et al. The diagnostic yield of Brugada syndrome after sudden death with normal autopsy. J. Am. Coll. Cardiol. 71, 1204–1214 (2018).

    Article  PubMed  Google Scholar 

  44. Ackerman, M. J., Tester, D. J. & Driscoll, D. J. Molecular autopsy of sudden unexplained death in the young. Am. J. Forensic Med. Pathol. 22, 105–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Ackerman, M. J., Tester, D. J., Porter, J. & Edwards, W. D. Molecular diagnosis of the inherited long-QT syndrome in a woman who died after near-drowning. N. Engl. J. Med. 341, 1121–1125 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Bagnall, R. D., Das, K. J., Duflou, J. & Semsarian, C. Exome analysis-based molecular autopsy in cases of sudden unexplained death in the young. Heart Rhythm 11, 655–662 (2014).

    Article  PubMed  Google Scholar 

  47. Hertz, C. L. et al. Next-generation sequencing of 100 candidate genes in young victims of suspected sudden cardiac death with structural abnormalities of the heart. Int. J. Leg. Med. 130, 91–102 (2016).

    Article  CAS  Google Scholar 

  48. Christiansen, S. L. et al. Genetic investigation of 100 heart genes in sudden unexplained death victims in a forensic setting. Eur. J. Hum. Genet. 24, 1797–1802 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lahrouchi, N. et al. Utility of post-mortem genetic testing in cases of sudden arrhythmic death syndrome. J. Am. Coll. Cardiol. 69, 2134–2145 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tester, D. J., Medeiros-Domingo, A., Will, M. L., Haglund, C. M. & Ackerman, M. J. Cardiac channel molecular autopsy: insights from 173 consecutive cases of autopsy-negative sudden unexplained death referred for postmortem genetic testing. Mayo Clin. Proc. 87, 524–539 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hofman, N. et al. Contribution of inherited heart disease to sudden cardiac death in childhood. Pediatrics 120, e967–e973 (2007).

    Article  PubMed  Google Scholar 

  52. van der Werf, C. et al. Diagnostic yield in sudden unexplained death and aborted cardiac arrest in the young: the experience of a tertiary referral center in the Netherlands. Heart Rhythm 7, 1383–1389 (2010).

    Article  PubMed  Google Scholar 

  53. Tester, D. J. et al. Cardiac genetic predisposition in sudden infant death syndrome. J. Am. Coll. Cardiol. 71, 1217–1227 (2018).

    Article  PubMed  Google Scholar 

  54. Shanks, G. W., Tester, D. J., Nishtala, S., Evans, J. M. & Ackerman, M. J. Genomic triangulation and coverage analysis in whole-exome sequencing-based molecular autopsies. Circ. Cardiovasc. Genet. 10, e001828 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Walsh, R. et al. Enhancing rare variant interpretation in inherited arrhythmias through quantitative analysis of consortium disease cohorts and population controls. Genet. Med. 23, 47–58 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Fellmann, F. et al. European recommendations integrating genetic testing into multidisciplinary management of sudden cardiac death. Eur. J. Hum. Genet. 27, 1763–1773 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Krahn, A. D. et al. Systematic assessment of patients with unexplained cardiac arrest: cardiac arrest survivors with preserved ejection fraction registry (CASPER). Circulation 120, 278–285 (2009).

    Article  PubMed  Google Scholar 

  59. Vittoria Matassini, M. et al. Evolution of clinical diagnosis in patients presenting with unexplained cardiac arrest or syncope due to polymorphic ventricular tachycardia. Heart Rhythm 11, 274–281 (2014).

    Article  PubMed  Google Scholar 

  60. Visser, M. et al. Long-term outcome of patients initially diagnosed with idiopathic ventricular fibrillation. Circ. Arrhythm. Electrophysiol. 9, e004258 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Mellor, G. et al. Genetic testing in the evaluation of unexplained cardiac arrest: from the CASPER (Cardiac Arrest Survivors with Preserved Ejection Fraction Registry). Circ. Cardiovasc. Genet. 10, e001686 (2017).

    Article  PubMed  Google Scholar 

  62. Visser, M. et al. Next-generation sequencing of a large gene panel in patients initially diagnosed with idiopathic ventricular fibrillation. Heart Rhythm 14, 1035–1040 (2017).

    Article  PubMed  Google Scholar 

  63. Leinonen, J. T. et al. The genetics underlying idiopathic ventricular fibrillation: a special role for catecholaminergic polymorphic ventricular tachycardia? Int. J. Cardiol. 250, 139–145 (2018).

    Article  PubMed  Google Scholar 

  64. Giudicessi, J. R. & Ackerman, M. J. Role of genetic heart disease in sentinel sudden cardiac arrest survivors across the age spectrum. Int. J. Cardiol. 270, 214–220 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Asatryan, B. et al. Usefulness of genetic testing in sudden cardiac arrest survivors with or without previous clinical evidence of heart disease. Am. J. Cardiol. 123, 2031–2038 (2019).

    Article  PubMed  Google Scholar 

  66. Isbister, J. C. et al. “Concealed cardiomyopathy” as a cause of previously unexplained sudden cardiac arrest. Int. J. Cardiol. 324, 96–101 (2021).

    Article  PubMed  Google Scholar 

  67. Ackerman, M. J. et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm 8, 1308–1339 (2011).

    Article  PubMed  Google Scholar 

  68. Viskin, S. & Belhassen, B. Idiopathic ventricular fibrillation. Am. Heart J. 120, 661–671 (1990).

    Article  CAS  PubMed  Google Scholar 

  69. Haïssaguerre, M. et al. Mapping and ablation of idiopathic ventricular fibrillation. Circulation 106, 962–967 (2002).

    Article  PubMed  Google Scholar 

  70. Noda, T. et al. Malignant entity of idiopathic ventricular fibrillation and polymorphic ventricular tachycardia initiated by premature extrasystoles originating from the right ventricular outflow tract. J. Am. Coll. Cardiol. 46, 1288–1294 (2005).

    Article  PubMed  Google Scholar 

  71. Alders, M. et al. Haplotype-sharing analysis implicates chromosome 7q36 harboring DPP6 in familial idiopathic ventricular fibrillation. Am. J. Hum. Genet. 84, 468–476 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sande, J. N. T. et al. Detailed characterization of familial idiopathic ventricular fibrillation linked to the DPP6 locus. Heart Rhythm 13, 905–912 (2016).

    Article  PubMed  Google Scholar 

  73. Blom, M. T. et al. Genetic, clinical and pharmacological determinants of out-of-hospital cardiac arrest: rationale and outline of the AmsteRdam Resuscitation Studies (ARREST) registry. Open Heart 1, e000112 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Milano, A. et al. Sudden cardiac arrest and rare genetic variants in the community. Circ. Cardiovasc. Genet. 9, 147–153 (2016).

    Article  PubMed  Google Scholar 

  75. Altshuler, D. M. et al. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Khera, A. V. et al. Rare genetic variants associated with sudden cardiac death in adults. J. Am. Coll. Cardiol. 74, 2623–2634 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Van Driest, S. L. et al. Association of arrhythmia-related genetic variants with phenotypes documented in electronic medical records. JAMA 315, 47–57 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Wang, Q. et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80, 805–811 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Kapplinger, J. D. et al. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm 7, 33–46 (2010).

    Article  PubMed  Google Scholar 

  80. McNair, W. P. et al. SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia. Circulation 110, 2163–2167 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Groenewegen, W. A. et al. A cardiac sodium channel mutation cosegregates with a rare connexin40 genotype in familial atrial standstill. Circ. Res. 92, 14–22 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Benson, D. W. et al. Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J. Clin. Invest. 112, 1019–1028 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Magnani, J. W. et al. Sequencing of SCN5A identifies rare and common variants associated with cardiac conduction: cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. Circ. Cardiovasc. Genet. 7, 365–373 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lin, H. et al. Common and rare coding genetic variation underlying the electrocardiographic PR interval. Circ. Genom. Precis. Med. 11, e002037 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Abdellah, Z. et al. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

    Article  CAS  Google Scholar 

  86. Belmont, J. W. et al. The international HapMap project. Nature 426, 789–796 (2003).

    Article  CAS  Google Scholar 

  87. Splawski, I. et al. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science 297, 1333–1336 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Burke, A. et al. Role of SCN5A Y1102 polymorphism in sudden cardiac death in blacks. Circulation 112, 798–802 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Bezzina, C. R. et al. Genome-wide association study identifies a susceptibility locus at 21q21 for ventricular fibrillation in acute myocardial infarction. Nat. Genet. 42, 688–691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Arking, D. E. et al. Identification of a sudden cardiac death susceptibility locus at 2q24.2 through genome-wide association in European ancestry individuals. PLoS Genet. 7, e1002158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Christophersen, I. E. et al. Fifteen genetic loci associated with the electrocardiographic P wave. Circ. Cardiovasc. Genet. 10, e001667 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pfeufer, A. et al. Genome-wide association study of PR interval. Nat. Genet. 42, 153–159 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ilkhanoff, L. et al. A common SCN5A variant is associated with PR interval and atrial fibrillation among African Americans. J. Cardiovasc. Electrophysiol. 25, 1150–1157 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ritchie, M. D. et al. Genome- and phenome-wide analyses of cardiac conduction identifies markers of arrhythmia risk. Circulation 127, 1377–1385 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sotoodehnia, N. et al. Common variants in 22 loci are associated with QRS duration and cardiac ventricular conduction. Nat. Genet. 42, 1068–1076 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Arking, D. E. et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat. Genet. 38, 644–651 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Jamshidi, Y. et al. Common variation in the NOS1AP gene is associated with drug-induced QT prolongation and ventricular arrhythmia. J. Am. Coll. Cardiol. 60, 841–850 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Arking, D. E. et al. Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. Nat. Genet. 46, 826–836 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Teumer, A. et al. KCND3 potassium channel gene variant confers susceptibility to electrocardiographic early repolarization pattern. JCI Insight 4, e131156 (2019).

    Article  PubMed Central  Google Scholar 

  100. Goldenberg, I. et al. Risk for life-threatening cardiac events in patients with genotype-confirmed long-QT syndrome and normal-range corrected QT intervals. J. Am. Coll. Cardiol. 57, 51–59 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Priori, S. G., Napolitano, C. & Schwartz, P. J. Low penetrance in the long-QT syndrome clinical impact. Circulation 99, 529–533 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Schwartz, P. J., Crotti, L. & George, A. L. Modifier genes for sudden cardiac death. Eur. Heart J. 39, 3925–3931 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Crotti, L. et al. KCNH2-K897T is a genetic modifier of latent congenital long-QT syndrome. Circulation 112, 1251–1258 (2005).

    Article  PubMed  Google Scholar 

  104. Crotti, L. et al. NOS1AP is a genetic modifier of the long-QT syndrome. Circulation 120, 1657–1663 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lahrouchi, N. et al. Transethnic genome-wide association study provides insights in the genetic architecture and heritability of long QT syndrome. Circulation 142, 324–338 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Giudicessi, J. R., Roden, D. M., Wilde, A. A. M. & Ackerman, M. J. Classification and reporting of potentially proarrhythmic common genetic variation in long QT syndrome genetic testing. Circulation 137, 619–630 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hosseini, S. M. et al. Reappraisal of reported genes for sudden arrhythmic death: evidence-based evaluation of gene validity for Brugada syndrome. Circulation 138, 1195–1205 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Walsh, R. et al. Defining the genetic architecture of hypertrophic cardiomyopathy: re-evaluating the role of non-sarcomeric genes. Eur. Heart J. 38, 3461–3468 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Walsh, R. et al. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet. Med. 19, 192–203 (2017).

    Article  PubMed  Google Scholar 

  110. Walsh, R., Tadros, R. & Bezzina, C. R. When genetic burden reaches threshold. Eur. Heart J. 41, 3849–3855 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bezzina, C. R. et al. Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat. Genet. 45, 1044–1049 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ripatti, S. et al. A multilocus genetic risk score for coronary heart disease: case-control and prospective cohort analyses. Lancet 376, 1393–1400 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Abraham, G. et al. Genomic prediction of coronary heart disease. Eur. Heart J. 37, 3267–3278 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Khera, A. V. et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N. Engl. J. Med. 375, 2349–2358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Inouye, M. et al. Genomic risk prediction of coronary artery disease in 480,000 adults: implications for primary prevention. J. Am. Coll. Cardiol. 72, 1883–1893 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Noseworthy, P. A. et al. Common genetic variants, QT interval, and sudden cardiac death in a Finnish population-based study. Circ. Cardiovasc. Genet. 4, 305–311 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Rosenberg, M. A. et al. Validation of polygenic scores for QT interval in clinical populations. Circ. Cardiovasc. Genet. 10, e001724 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Turkowski, K. L. et al. Corrected QT interval-polygenic risk score and its contribution to type 1, type 2, and type 3 long-QT syndrome in probands and genotype-positive family members. Circ. Genom. Precis. Med. 13, e002922 (2020).

    Article  PubMed  Google Scholar 

  119. Wijeyeratne, Y. D. et al. SCN5A mutation type and a genetic risk score associate variably with Brugada syndrome phenotype in SCN5A families. Circ. Genom. Precis. Med. 13, e002911 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Juang, J.-M. J. et al. Validation and disease risk assessment of previously reported genome-wide genetic variants associated with Brugada syndrome: SADS-TW BrS registry. Circ. Genom. Precis. Med. 13, e002797 (2020).

    Article  Google Scholar 

  121. Makarawate, P. et al. Common and rare susceptibility genetic variants predisposing to Brugada syndrome in Thailand. Heart Rhythm 17, 2145–2153 (2020).

    Article  PubMed  Google Scholar 

  122. Tadros, R. et al. Predicting cardiac electrical response to sodium-channel blockade and Brugada syndrome using polygenic risk scores. Eur. Heart J. 40, 3097–3107 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Roden, D. M. Drug-induced prolongation of the QT interval. N. Engl. J. Med. 10, 1013–1035 (2004).

    Article  Google Scholar 

  124. Straus, S. M. J. M. et al. Non-cardiac QTc-prolonging drugs and the risk of sudden cardiac death. Eur. Heart J. 26, 2007–2012 (2005).

    Article  PubMed  Google Scholar 

  125. Behr, E. R. & Roden, D. Drug-induced arrhythmia: pharmacogenomic prescribing? Eur. Heart J. 34, 89–95 (2013).

    Article  PubMed  Google Scholar 

  126. Zeltser, D. et al. Torsade de pointes due to noncardiac drugs: most patients have easily identifiable risk factors. Medicine 82, 282–290 (2003).

    Article  PubMed  Google Scholar 

  127. Roden, D. M. Long QT syndrome: reduced repolarization reserve and the genetic link. J. Intern. Med. 259, 59–69 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Itoh, H. et al. Latent genetic backgrounds and molecular pathogenesis in drug-induced long-QT syndrome. Circ. Arrhythm. Electrophysiol. 2, 511–523 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Paulussen, A. D. C. et al. Genetic variations of HCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long QT syndrome patients. J. Mol. Med. 82, 182–188 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Yang, P. et al. Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation 105, 1943–1948 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Ramirez, A. H. et al. Novel rare variants in congenital cardiac arrhythmia genes are frequent in drug-induced torsades de pointes. Pharmacogenomics J. 13, 325–329 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Kääb, S. et al. A large candidate gene survey identifies the KCNE1 D85N polymorphism as a possible modulator of drug-induced torsades de pointes. Circ. Cardiovasc. Genet. 5, 91–99 (2012).

    Article  PubMed  CAS  Google Scholar 

  133. Becker, M. L. et al. A common NOS1AP genetic polymorphism is associated with increased cardiovascular mortality in users of dihydropyridine calcium channel blockers. Br. J. Clin. Pharmacol. 67, 61–67 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kao, W. H. L. et al. Genetic variations in nitric oxide synthase 1 adaptor protein are associated with sudden cardiac death in US white community-based populations. Circulation 119, 940–951 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Behr, E. R. et al. Genome wide analysis of drug-induced torsades de pointes: lack of common variants with large effect sizes. PLoS ONE 8, e78511 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Strauss, D. G. et al. Common genetic variant risk score is associated with drug-induced QT prolongation and torsade de pointes risk. Circulation 135, 1300–1310 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 19, 581–590 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Glinge, C., Lahrouchi, N., Jabbari, R., Tfelt-Hansen, J. & Bezzina, C. R. Genome-wide association studies of cardiac electrical phenotypes. Cardiovasc. Res. 116, 1620–1634 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Holm, I. A. et al. The BabySeq project: implementing genomic sequencing in newborns. BMC Pediatr. 18, 1–10 (2018).

    Article  Google Scholar 

  140. Kaltman, J. R. et al. Screening for sudden cardiac death in the young: report from a National Heart, Lung, and Blood Institute working group. Circulation 123, 1911–1918 (2011).

    Article  PubMed  Google Scholar 

  141. Margey, R. et al. Sudden cardiac death in 14- to 35-year olds in Ireland from 2005 to 2007: a retrospective registry. Europace 13, 1411–1418 (2011).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

C.S. and E.R.B. are supported by the Robert Lancaster Memorial Fund sponsored by McColl’s Retail Group Ltd. C.R.B. is supported by the Dutch Heart Foundation (CVON Predict2 project), the Netherlands Organization for Scientific Research (VICI fellowship, 016.150.610) and Fondation Leducq (17CVD02). M.J.A. is supported by the Mayo Clinic Windland Smith Rice Comprehensive Sudden Cardiac Death Program.

Author information

Authors and Affiliations

Authors

Contributions

C.S. researched data for and wrote the article. All the authors contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Elijah R. Behr.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks C. Napolitano, C. Semsarian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

gnomAD: https://gnomad.broadinstitute.org/

HapMap: https://www.genome.gov/10001688/international-hapmap-project

Human Genome Project: https://www.genome.gov/human-genome-project

Glossary

Alleles

An allele is one of several alternative forms of a gene occupying a specific locus on a chromosome.

Minor allele frequency

The frequency at which the second most common allele occurs in a given population.

Founder variants

Disease-causing genetic variants that are found repeatedly in a given population and that are derived from a shared ancestor who harboured that variant.

Primary arrhythmia syndromes

Inheritable cardiac conditions predisposing individuals to arrhythmias in the absence of structural heart disease.

Exonic

Relating to a coding segment of DNA.

Single-nucleotide polymorphisms

Substitutions of individual nucleotides that occur with a measurable frequency.

Risk alleles

Alleles that confer a risk of developing a disease.

Linkage disequilibrium

Non-random association between particular DNA variants at two sites that are physically close to one another on the chromosome (that is, the frequency is significantly greater than that expected from the product of the observed allelic frequencies at each site independently).

Intronic

Relating to a non-coding segment of DNA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scrocco, C., Bezzina, C.R., Ackerman, M.J. et al. Genetics and genomics of arrhythmic risk: current and future strategies to prevent sudden cardiac death. Nat Rev Cardiol 18, 774–784 (2021). https://doi.org/10.1038/s41569-021-00555-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-021-00555-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing