Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Use of medication for cardiovascular disease during pregnancy

Key Points

  • The physiological changes of pregnancy result in changes to the pharmacokinetics of many drugs used for the treatment of cardiovascular disease, often necessitating an increase in dosage

  • Avoiding necessary medication for fear of teratogenicity threatens both mother and fetus, and is often a worse option than accepting the small increase in fetal risk related to the medication

  • Most drugs for cardiovascular disease can be used safely during pregnancy; exceptions include high-dose warfarin during the first trimester, angiotensin-converting-enzyme inhibitors, angiotensin-receptor blockers, amiodarone, and spironolactone

  • Anticoagulation in pregnant women with mechanical heart valves is complex, and these women need expert care in specialized centres throughout their pregnancies

  • Cardiologists should be able to advise obstetricians about the safe use of tocolytic and uterotonic drugs in patients with cardiovascular disease

Abstract

One-third of women with heart disease use medication for the treatment of cardiovascular disease (CVD) during pregnancy. Increased plasma volume, renal clearance, and liver enzyme activity in pregnant women change the pharmacokinetics of these drugs, often resulting in the need for an increased dose. Fetal well-being is a major concern among pregnant women. Fortunately, many drugs used to treat CVD can be used safely during pregnancy, with the exception of high-dose warfarin in the first trimester, angiotensin-converting-enzyme inhibitors, angiotensin-receptor blockers, amiodarone, and spironolactone. A timely and thorough discussion between the cardiologist and the pregnant patient about the potential benefits and adverse effects of medication for CVD is important. Noncompliance with necessary treatment for cardiovascular disorders endangers not only the mother, but also the fetus. This Review is an overview of the pharmacokinetic changes in medications for CVD during pregnancy and the safety of these drugs for the fetus. The implications for maternal treatment are discussed. The Review also includes a short section on the cardiovascular effects of medication used for obstetric indications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Haemodynamic changes during pregnancy.22,23,126
Figure 3: Effects of cardiovascular medication on the fetus.

References

  1. Cantwell, R. et al. Saving mothers' lives: reviewing maternal deaths to make motherhood safer: 2006–2008 The eighth report of the confidential enquiries into maternal deaths in the United Kingdom. BJOG 118 (Suppl. 1), 1–203 (2011).

    PubMed  Google Scholar 

  2. Schutte, J. M. et al. Indirect maternal mortality increases in the Netherlands. Acta Obstet. Gynecol. Scand. 89, 762–768 (2010).

    Article  PubMed  Google Scholar 

  3. Schutte, J. M. et al. Rise in maternal mortality in the Netherlands. BJOG 117, 399–406 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Drenthen, W. et al. Predictors of pregnancy complications in women with congenital heart disease. Eur. Heart J. 31, 2124–2132 (2010).

    Article  PubMed  Google Scholar 

  5. Drenthen, W. et al. Outcome of pregnancy in women with congenital heart disease: a literature review. J. Am. Coll. Cardiol. 49, 2303–2311 (2007).

    Article  PubMed  Google Scholar 

  6. Roos-Hesselink, J. W. et al. Outcome of pregnancy in patients with structural or ischaemic heart disease: results of a registry of the European Society of Cardiology. Eur. Heart J. 34, 657–665 (2013).

    Article  PubMed  Google Scholar 

  7. Siu, S. C. et al. Prospective multicenter study of pregnancy outcomes in women with heart disease. Circulation 104, 515–521 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Pieper, P. G. et al. Uteroplacental blood flow, cardiac function, and pregnancy outcome in women with congenital heart disease. Circulation 128, 2478–2487 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Yap, S. C. et al. Comparison of pregnancy outcomes in women with repaired versus unrepaired atrial septal defect. BJOG 116, 1593–1601 (2009).

    Article  PubMed  Google Scholar 

  10. Drenthen, W. et al. Non-cardiac complications during pregnancy in women with isolated congenital pulmonary valvar stenosis. Heart 92, 1838–1843 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vriend, J. W. et al. Outcome of pregnancy in patients after repair of aortic coarctation. Eur. Heart J. 26, 2173–2178 (2005).

    Article  PubMed  Google Scholar 

  12. Odalovic, M. et al. Predictors of the use of medications before and during pregnancy. Int. J. Clin. Pharm. 35, 408–416 (2013).

    Article  PubMed  Google Scholar 

  13. Ruys, T. P. et al. Heart failure in pregnant women with cardiac disease: data from the ROPAC. Heart 100, 231–238 (2014).

    Article  PubMed  Google Scholar 

  14. Ruys, T. P. et al. Cardiac medication during pregnancy, data from the ROPAC. Int. J. Cardiol. 177, 124–128 (2014).

    Article  PubMed  Google Scholar 

  15. Costantine, M. M. Physiologic and pharmacokinetic changes in pregnancy. Front. Pharmacol. 5, 65 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lupattelli, A., Spigset, O. & Nordeng, H. Adherence to medication for chronic disorders during pregnancy: results from a multinational study. Int. J. Clin. Pharm. 36, 145–153 (2014).

    Article  PubMed  Google Scholar 

  17. Anderson, G. D. Pregnancy-induced changes in pharmacokinetics: a mechanistic-based approach. Clin. Pharmacokinet. 44, 989–1008 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Anderson, G. D. & Carr, D. B. Effect of pregnancy on the pharmacokinetics of antihypertensive drugs. Clin. Pharmacokinet. 48, 159–168 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. European Society of Gynecology (ESG) et al. ESC guidelines on the management of cardiovascular diseases during pregnancy: the Task Force on the Management of Cardiovascular Diseases during Pregnancy of the European Society of Cardiology (ESC). Eur. Heart J. 32, 3147–3197 (2011).

  20. Hytten, F. E. & Paintin, D. B. Increase in plasma volume during normal pregnancy. J. Obstet. Gynaecol. Br. Emp. 70, 402–407 (1963).

    Article  CAS  PubMed  Google Scholar 

  21. Clark, S. L. et al. Central hemodynamic assessment of normal term pregnancy. Am. J. Obstet. Gynecol. 161, 1439–1442 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Hunter, S. & Robson, S. C. Adaptation of the maternal heart in pregnancy. Br. Heart J. 68, 540–543 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sturgiss, S. N., Dunlop, W. & Davison, J. M. Renal haemodynamics and tubular function in human pregnancy. Baillieres Clin. Obstet. Gynaecol. 8, 209–234 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Dunlop, W. & Davison, J. M. Renal haemodynamics and tubular function in human pregnancy. Baillieres Clin. Obstet. Gynaecol. 1, 769–787 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. Frederiksen, M. C. Physiologic changes in pregnancy and their effect on drug disposition. Semin. Perinatol. 25, 120–123 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Dunlop, W. Serial changes in renal haemodynamics during normal human pregnancy. Br. J. Obstet. Gynaecol. 88, 1–9 (1981).

    Article  CAS  PubMed  Google Scholar 

  27. Davison, J. M. & Hytten, F. E. Glomerular filtration during and after pregnancy. J. Obstet. Gynaecol. Br. Commonw. 81, 588–595 (1974).

    Article  CAS  PubMed  Google Scholar 

  28. Riva, E. et al. Pharmacokinetics of furosemide in gestosis of pregnancy. Eur. J. Clin. Pharmacol. 14, 361–366 (1978).

    Article  CAS  PubMed  Google Scholar 

  29. Lynch, T. & Price, A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am. Fam. Physician 76, 391–396 (2007).

    PubMed  Google Scholar 

  30. Haas, D. M. & D'Alton, M. Pharmacogenetics and other reasons why drugs can fail in pregnancy: higher dose or different drug? Obstet. Gynecol. 120, 1176–1179 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. De Sevo, M. R. Genetic variations in warfarin metabolism: why one size doesn't fit all with some drugs. Nurs. Womens Health 14, 131–136 (2010).

    Article  PubMed  Google Scholar 

  32. Högstedt, S., Lindberg, B., Peng, D. R., Regårdh, C. G. & Rane, A. Pregnancy-induced increase in metoprolol metabolism. Clin. Pharmacol. Ther. 37, 688–692 (1985).

    Article  PubMed  Google Scholar 

  33. Prevost, R. R., Akl, S. A., Whybrew, W. D. & Sibai, B. M. Oral nifedipin pharmacokinetics in pregnancy-induced hypertension. Pharmacotherapy 12, 174–177 (1992).

    CAS  PubMed  Google Scholar 

  34. Barbour, L. A., Oja, J. L. & Schultz, L. K. A prospective trial that demonstrates that dalteparin requirements increase in pregnancy to maintain therapeutic levels of anticoagulation. Am. J. Obstet. Gynecol. 191, 1024–1029 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Lebaudy, C. et al. Changes in enoxaparin pharmacokinetics during pregnancy and implications for antithrombotic therapeutic strategy. Clin. Pharmacol. Ther. 84, 370–377 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Brehm, K. et al. Mechanical heart valve recipients: anticoagulation in patients with genetic variations of phenprocoumon metabolism. Eur. J. Cardiothorac. Surg. 44, 309–315 (2013).

    Article  PubMed  Google Scholar 

  37. Lopez-Parra, A. M., Borobia, A. M., Baeza, C., Arroyo-Pardo, E. & Carcas, A. J. A multiplex assay to detect variations in the CYP2C9, VKORC1, CYP4F2 and APOE genes involved in acenocoumarol metabolism. Clin. Biochem. 46, 167–169 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Wadelius, M. et al. Association of warfarin dose with genes involved in its action and metabolism. Hum. Genet. 121, 23–34 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Koren, G., Pastuszak, A. & Ito, S. Drugs in pregnancy. N. Engl. J. Med. 338, 1128–1137 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Rakusan, K. Drugs in pregnancy: Implications for a cardiologist. Exp. Clin. Cardiol. 15, e100–e103 (2010).

    PubMed  PubMed Central  Google Scholar 

  41. Thorpe, P. G. et al. Medications in the first trimester of pregnancy: most common exposures and critical gaps in understanding fetal risk. Pharmacoepidemiol. Drug Saf. 22, 1013–1018 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Koren, G., Clark, S. & Matsui, D. Drugs during pregnancy and lactation: new solutions to serious challenges. Obstet. Gynecol. Int. 2012, 206179 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kusters, D. M. et al. Statin use during pregnancy: a systematic review and meta-analysis. Expert Rev. Cardiovasc. Ther. 10, 363–378 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. FDA, HHS. Content and format of labeling for human prescription drug and biological products; requirements for pregnancy and lactation labeling. Final rule. Fed. Regist. 79, 72063–72103 (2014).

    Google Scholar 

  45. US Food and Drug Administration. Pregnancy and lactation labeling final rule [online], (2014).

  46. Balci, A. et al. Pregnancy in women with corrected tetralogy of Fallot: occurrence and predictors of adverse events. Am. Heart J. 161, 307–313 (2011).

    Article  PubMed  Google Scholar 

  47. Gelson, E. et al. Effect of maternal heart disease on fetal growth. Obstet. Gynecol. 117, 886–891 (2011).

    Article  PubMed  Google Scholar 

  48. Yakoob, M. Y. et al. The risk of congenital malformations associated with exposure to beta-blockers early in pregnancy: a meta-analysis. Hypertension 62, 375–381 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nakhai-Pour, H. R., Rey, E. & Bérard, A. Antihypertensive medication use during pregnancy and the risk of major congenital malformations or small-for-gestational-age newborns. Birth Defects Res. B. Dev. Reprod. Toxicol. 89, 147–154 (2010).

    CAS  PubMed  Google Scholar 

  50. Meidahl Petersen, K. et al. β-Blocker treatment during pregnancy and adverse pregnancy outcomes: a nationwide population-based cohort study. BMJ Open 2, e001185 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Abalos, E., Duley, L. & Steyn, D. W. Antihypertensive drug therapy for mild to moderate hypertension during pregnancy. Cochrane Database of Systematic Reviews, Issue 2, Art. No.: CD002252 http://dx.doi.org/10.1002/14651858.CD002252.pub3,.

  52. Ersboll, A. S., Hedegaard, M., Sondergaard, L., Ersboll, M. & Johansen, M. Treatment with oral beta-blockers during pregnancy complicated by maternal heart disease increases the risk of fetal growth restriction. BJOG 121, 618–626 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Chow, T., Galvin, J. & McGovern, B. Antiarrhythmic drug therapy in pregnancy and lactation. Am. J. Cardiol. 82, 58I–62I (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Crooks, B. N., Deshpande, S. A., Hall, C., Platt, M. P. & Milligan, D. W. Adverse neonatal effects of maternal labetalol treatment. Arch. Dis. Child. Fetal Neonatal Ed. 79, F150–F151 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gladstone, G. R., Hordof, A. & Gersony, W. M. Propranolol administration during pregnancy: effects on the fetus. J. Pediatr. 86, 962–964 (1975).

    Article  CAS  PubMed  Google Scholar 

  56. Klarr, J. M., Bhatt-Mehta, V. & Donn, S. M. Neonatal adrenergic blockade following single dose maternal labetalol administration. Am. J. Perinatol. 11, 91–93 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Kockova, R. et al. Heart rate changes mediate the embryotoxic effect of antiarrhythmic drugs in the chick embryo. Am. J. Physiol. Heart Circ. Physiol. 304, H895–H902 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Hejnova, L. et al. Adenylyl cyclase signaling in the developing chick heart: the deranging effect of antiarrhythmic drugs. Biomed. Res. Int. 2014, 463123 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Osol, G. & Mandala, M. Maternal uterine vascular remodeling during pregnancy. Physiology (Bethesda) 24, 58–71 (2009).

    Google Scholar 

  60. Prefumo, F., Sebire, N. J. & Thilaganathan, B. Decreased endovascular trophoblast invasion in first trimester pregnancies with high-resistance uterine artery Doppler indices. Hum. Reprod. 19, 206–209 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Baschat, A. A. & Hecher, K. Fetal growth restriction due to placental disease. Semin. Perinatol. 28, 67–80 (2004).

    Article  PubMed  Google Scholar 

  62. Kampman, M. A. et al. Maternal cardiac function, uteroplacental Doppler flow parameters and pregnancy outcome: a systematic review. Ultrasound Obstet. Gynecol. 46, 21–28 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Prefumo, F. et al. Maternal cardiovascular function in pregnancies complicated by intrauterine growth restriction. Ultrasound Obstet. Gynecol. 31, 65–71 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Vasapollo, B., Novelli, G. P. & Valensise, H. Total vascular resistance and left ventricular morphology as screening tools for complications in pregnancy. Hypertension 51, 1020–1026 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Molvi, S. N., Mir, S., Rana, V. S., Jabeen, F. & Malik, A. R. Role of antihypertensive therapy in mild to moderate pregnancy-induced hypertension: a prospective randomized study comparing labetalol with alpha methyldopa. Arch. Gynecol. Obstet. 285, 1553–1562 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. el-Qarmalawi, A. M., Morsy, A. H., al-Fadly, A., Obeid, A. & Hashem, M. Labetalol vs. methyldopa in the treatment of pregnancy-induced hypertension. Int. J. Gynaecol. Obstet. 49, 125–130 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Al Khaja, K. A., Sequeira, R. P., Alkhaja, A. K. & Damanhori, A. H. Drug treatment of hypertension in pregnancy: a critical review of adult guideline recommendations. J. Hypertens. 32, 454–463 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. van Driel, D. et al. Teratogen update: fetal effects after in utero exposure to coumarins overview of cases, follow-up findings, and pathogenesis. Teratology 66, 127–140 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Wesseling, J. et al. Coumarins during pregnancy: long-term effects on growth and development of school-age children. Thromb. Haemost. 85, 609–613 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. van Driel, D. et al. In utero exposure to coumarins and cognition at 8 to 14 years old. Pediatrics 107, 123–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Chan, W. S., Anand, S. & Ginsberg, J. S. Anticoagulation of pregnant women with mechanical heart valves: a systematic review of the literature. Arch. Intern. Med. 160, 191–196 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Geelani, M. A. et al. Anticoagulation in patients with mechanical valves during pregnancy. Asian Cardiovasc. Thorac. Ann. 13, 30–33 (2005).

    Article  PubMed  Google Scholar 

  73. Akhtar, R. P., Abid, A. R., Zafar, H., Cheema, M. A. & Khan, J. S. Anticoagulation in pregnancy with mechanical heart valves: 10-year experience. Asian Cardiovasc. Thorac. Ann. 15, 497–501 (2007).

    Article  PubMed  Google Scholar 

  74. Meschengieser, S. S., Fondevila, C. G., Santarelli, M. T. & Lazzari, M. A. Anticoagulation in pregnant women with mechanical heart valve prostheses. Heart 82, 23–26 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Khamooshi, A. J. et al. Anticoagulation for prosthetic heart valves in pregnancy. Is there an answer? Asian Cardiovasc. Thorac. Ann. 15, 493–496 (2007).

    Article  PubMed  Google Scholar 

  76. Sadler, L. et al. Pregnancy outcomes and cardiac complications in women with mechanical, bioprosthetic and homograft valves. BJOG 107, 245–253 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Hassouna, A. & Allam, H. Limited dose warfarin throughout pregnancy in patients with mechanical heart valve prosthesis: a meta-analysis. Interact. Cardiovasc. Thorac. Surg. 18, 797–806 (2014).

    Article  PubMed  Google Scholar 

  78. Vitale, N. et al. Dose-dependent fetal complications of warfarin in pregnant women with mechanical heart valves. J. Am. Coll. Cardiol. 33, 1637–1641 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Malik, H. T., Sepehripour, A. H., Shipolini, A. R. & McCormack, D. J. Is there a suitable method of anticoagulation in pregnant patients with mechanical prosthetic heart valves? Interact. Cardiovasc. Thorac. Surg. 15, 484–488 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Al-Lawati, A. A., Venkitraman, M., Al-Delaime, T. & Valliathu, J. Pregnancy and mechanical heart valves replacement; dilemma of anticoagulation. Eur. J. Cardiothorac. Surg. 22, 223–227 (2002).

    Article  PubMed  Google Scholar 

  81. Basude, S., Hein, C., Curtis, S. L., Clark, A. & Trinder, J. Low-molecular-weight heparin or warfarin for anticoagulation in pregnant women with mechanical heart valves: what are the risks? A retrospective observational study. BJOG 119, 1008–1013 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Yinon, Y. et al. Use of low molecular weight heparin in pregnant women with mechanical heart valves. Am. J. Cardiol. 104, 1259–1263 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Quinn, J. et al. Use of high intensity adjusted dose low molecular weight heparin in women with mechanical heart valves during pregnancy: a single-center experience. Haematologica 94, 1608–1612 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Xiang, L., Wei, Z. & Cao, Y. Symptoms of an intrauterine hematoma associated with pregnancy complications: a systematic review. PLoS ONE 9, e111676 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Greer, I. A. & Nelson-Piercy, C. Low-molecular-weight heparins for thromboprophylaxis and treatment of venous thromboembolism in pregnancy: a systematic review of safety and efficacy. Blood 106, 401–407 (2005).

    Article  CAS  Google Scholar 

  86. Regitz-Zagrosek, V., Gohlke-Barwolf, C., Iung, B. & Pieper, P. G. Management of cardiovascular diseases during pregnancy. Curr. Probl. Cardiol. 39, 85–151 (2014).

    Article  PubMed  Google Scholar 

  87. Bates, S. M. et al. Venous thromboembolism, thrombophilia, antithrombotic therapy, and pregnancy: American College of Chest Physicians evidence-based clinical practice guidelines (8th edition). Chest 133, S844–S886 (2008).

    Article  CAS  Google Scholar 

  88. Nishimura, R. A. et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Thorac. Cardiovasc. Surg. 148, e1–e132 (2014).

    Article  PubMed  Google Scholar 

  89. Oran, B., Lee-Parritz, A. & Ansell, J. Low molecular weight heparin for the prophylaxis of thromboembolism in women with prosthetic mechanical heart valves during pregnancy. Thromb. Haemost. 92, 747–751 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. McLintock, C., McCowan, L. M. & North, R. A. Maternal complications and pregnancy outcome in women with mechanical prosthetic heart valves treated with enoxaparin. BJOG 116, 1585–1592 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Abildgaard, U., Sandset, P. M., Hammerstrom, J., Gjestvang, F. T. & Tveit, A. Management of pregnant women with mechanical heart valve prosthesis: thromboprophylaxis with low molecular weight heparin. Thromb. Res. 124, 262–267 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Goland, S. et al. Monitoring of anti-Xa in pregnant patients with mechanical prosthetic valves receiving low-molecular-weight heparin: peak or trough levels? J. Cardiovasc. Pharmacol. Ther. 19, 451–456 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Elkayam, U. & Goland, S. The search for a safe and effective anticoagulation regimen in pregnant women with mechanical prosthetic heart valves. J. Am. Coll. Cardiol. 59, 1116–1118 (2012).

    Article  PubMed  Google Scholar 

  94. Königsbrügge, O., Langer, M., Hayde, M., Ay, C. & Pabinger, I. Oral anticoagulation with rivaroxaban during pregnancy: a case report. Thromb. Haemost. 112, 1323–1324 (2014).

    Article  PubMed  Google Scholar 

  95. European Medicines Agency. EPAR summary for the public. Xarelto (rivaroxaban) [online], (2013).

  96. European Medicines Agency. Xarelto. Summary of product characteristics [online], (2014).

  97. Sorensen, H. T., Czeizel, A. E., Rockenbauer, M., Steffensen, F. H. & Olsen, J. The risk of limb deficiencies and other congenital abnormalities in children exposed in utero to calcium channel blockers. Acta Obstet. Gynecol. Scand. 80, 397–401 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Sorensen, H. T. et al. Pregnancy outcome in women exposed to calcium channel blockers. Reprod. Toxicol. 12, 383–384 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Davis, R. L. et al. Risks of congenital malformations and perinatal events among infants exposed to calcium channel and beta-blockers during pregnancy. Pharmacoepidemiol. Drug Saf. 20, 138–145 (2011).

    Article  PubMed  Google Scholar 

  100. Weber-Schoendorfer, C. et al. The safety of calcium channel blockers during pregnancy: a prospective, multicenter, observational study. Reprod. Toxicol. 26, 24–30 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Bullo, M., Tschumi, S., Bucher, B. S., Bianchetti, M. G. & Simonetti, G. D. Pregnancy outcome following exposure to angiotensin-converting enzyme inhibitors or angiotensin receptor antagonists: a systematic review. Hypertension 60, 444–450 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Cooper, W. O. et al. Major congenital malformations after first-trimester exposure to ACE inhibitors. N. Engl. J. Med. 354, 2443–2451 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Spaggiari, E. et al. Prognosis and outcome of pregnancies exposed to renin-angiotensin system blockers. Prenat. Diagn. 32, 1071–1076 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Bartalena, L., Bogazzi, F., Braverman, L. E. & Martino, E. Effects of amiodarone administration during pregnancy on neonatal thyroid function and subsequent neurodevelopment. J. Endocrinol. Invest. 24, 116–130 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Widerhorn, J., Bhandari, A. K., Bughi, S., Rahimtoola, S. H. & Elkayam, U. Fetal and neonatal adverse effects profile of amiodarone treatment during pregnancy. Am. Heart J. 122, 1162–1166 (1991).

    Article  CAS  PubMed  Google Scholar 

  106. Wagner, X. et al. Coadminsitration of flecainide acetate and sotalol during pregnancy: lack of teratogenic effects, passage across the placenta, and accretion in human breast milk. Am. Heart J. 119, 700–702 (1990).

    Article  CAS  PubMed  Google Scholar 

  107. Godfrey, L. M., Erramouspe, J. & Cleveland, K. W. Teratogenic risk of statins in pregnancy. Ann. Pharmacother. 46, 1419–1424 (2012).

    Article  PubMed  Google Scholar 

  108. Winterfeld, U. et al. Pregnancy outcome following maternal exposure to statins: a multicentre prospective study. BJOG 120, 463–471 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Hecker, A., Hasan, S. H., & Neumann, F. Disturbances in sexual differentiation of rat fetuses following spironolactone treatment. Acta Enodcrinol. (Copenh.) 95, 540–545 (1980).

    CAS  Google Scholar 

  110. Potondi, A. Congenital rhabdomyoma of the heart and intrauterine digitalis poisoning. J. Forensic Sci. 11, 81–88 (1966).

    CAS  PubMed  Google Scholar 

  111. Sherman, J. L. & Locke, R. V. Transplacental neonatal digitalis intoxication. Am. J. Cardiol. 6, 834–837 (1960).

    Article  Google Scholar 

  112. Kozer, E. et al. Aspirin consumption during the first trimester of pregnancy and congenital anomalies: a meta-analysis. Am. J. Obstet. Gynecol. 187, 1623–1630 (2002).

    Article  PubMed  Google Scholar 

  113. Werler, M. M., Sheehan, J. E. & Mitchell, A. A. Maternal medication use and risks of gastroschisis and small intestinal atresia. Am. J. Epidemiol. 155, 26–31 (2002).

    Article  PubMed  Google Scholar 

  114. Perkin, R. M., Levin, D. L. & Clark, R. Serum salicylate levels and right-to-left ductus shunts in newborn infants with persistent pulmonary hypertension. J. Pediatr. 96, 721–726 (1980).

    Article  CAS  PubMed  Google Scholar 

  115. Alano, M. A., Ngougmna, E., Ostrea, E. M. Jr & Konduri, G. G. Analysis of nonsteroidal antiinflammatory drugs in meconium and its relation to persistent pulmonary hypertension of the newborn. Pediatrics 107, 519–523 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. James, A. H., Brancazio, L. R. & Price, T. Aspirin and reproductive outcomes. Obstet. Gynecol. Surv. 63, 49–57 (2008).

    Article  PubMed  Google Scholar 

  117. Norgard, B., Puho, E., Czeizel, A. E., Skriver, M. V. & Sorensen, H. T. Aspirin use during early pregnancy and the risk of congenital abnormalities: a population-based case-control study. Am. J. Obstet. Gynecol. 192, 922–923 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Kozer, E. et al. Effects of aspirin consumption during pregnancy on pregnancy outcomes: meta-analysis. Birth Defects Res. B. Dev. Reprod. Toxicol. 68, 70–84 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Al-Aqeedi, R. F. & Al-Nabti, A. D. Drug-eluting stent implantation for acute myocardial infarction during pregnancy with use of glycoprotein IIb/IIIa inhibitor, aspirin and clopidogrel. J. Invasive Cardiol. 20, E146–E149 (2008).

    PubMed  Google Scholar 

  120. Hubinont, C. & Debieve, F. Prevention of preterm labour: 2011 update on tocolysis. J. Pregnancy 2011, 941057 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Turnbull, J. & Bell, R. Obstetric anaesthesia and peripartum management. Best Pract. Res. Clin. Obstet. Gynaecol. 28, 593–605 (2014).

    Article  PubMed  Google Scholar 

  122. Svanstrom, M. C. et al. Signs of myocardial ischaemia after injection of oxytocin: a randomized double-blind comparison of oxytocin and methylergometrine during Caesarean section. Br. J. Anaesth. 100, 683–689 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Jonsson, M., Hanson, U., Lidell, C. & Nordén-Lindeberg, S. ST depression at caesarean section and the relation to oxytocin dose. A randomised controlled trial. BJOG 117, 76–83 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Mousa, H. A., McKinley, C. A. & Thong, J. Acute postpartum myocardial infarction after ergometrine administration in a woman with familial hypercholesterolaemia. BJOG 107, 939–940 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Tsui, B. C., Stewart, B., Fitzmaurice, A. & Williams, R. Cardiac arrest and myocardial infarction induced by postpartum intravenous ergonovine administration. Anesthesiology 94, 363–364 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Dunlop, W. & Davison, J. M. Renal haemodynamics and tubular function in human pregnancy. Baillieres Clin. Obstet. Gynaecol. 1, 769–787 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petronella G. Pieper.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pieper, P. Use of medication for cardiovascular disease during pregnancy. Nat Rev Cardiol 12, 718–729 (2015). https://doi.org/10.1038/nrcardio.2015.172

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2015.172

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing