Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Telomere dysfunction and tumour suppression: the senescence connection

Key Points

  • Telomeres are TTAGGG repetitive sequences that cap the ends of eukaryotic chromosomes.

  • A core of telomere binding proteins, termed the shelterin complex, serve to protect telomeric ends.

  • Critical telomere shortening or uncapping of telomere binding proteins results in telomere dysfunction.

  • Dysfunctional telomeres activate a DNA damage response. In the setting of a competent p53 pathway, this initiates senescence and apoptotic programmes to inhibit tumorigenesis.

  • In cells with mutant p53, dysfunctional telomeres promote genome instability and progression to cancer.

  • Cellular senescence is as potent as apoptosis in suppressing spontaneous tumorigenesis in mouse models of telomere dysfunction.

Abstract

Long-lived organisms such as humans have evolved several intrinsic tumour suppressor mechanisms to combat the slew of oncogenic somatic mutations that constantly arise in proliferating stem-cell compartments. One of these anticancer barriers is the telomere, a specialized nucleoprotein complex that caps the ends of eukaryotic chromosome. Impaired telomere function activates the canonical DNA damage response pathway that engages p53 to initiate apoptosis or replicative senescence. Here, we discuss how p53-dependent senescence induced by dysfunctional telomeres may be as potent as apoptosis in suppressing tumorigenesis in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Telomere structure.
Figure 2: Telomere dysfunction activates the p53 and RB pathways.
Figure 3: Activation of cellular senescence suppresses tumorigenesis in vivo.

Similar content being viewed by others

References

  1. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961). A classic paper demonstrating that human cells have finite proliferative capacity in vitro (the 'Hayflick limit').

    CAS  PubMed  Google Scholar 

  2. Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995). This paper reports on the SA-β-gal assay as a way to mark senescent cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    CAS  PubMed  Google Scholar 

  4. Vaziri, H. & Benchimol, S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol. 8, 279–282 (1998).

    CAS  PubMed  Google Scholar 

  5. Maser, R. S. & DePinho, R. A. Connecting chromosomes, crisis, and cancer. Science 297, 565–569 (2002).

    CAS  PubMed  Google Scholar 

  6. Masutomi, K. et al. Telomerase maintains telomere structure in normal human cells. Cell 114, 241–253 (2003).

    CAS  PubMed  Google Scholar 

  7. Wright, W. E., Piatyszek, M. A., Rainey, W. E., Byrd, W. & Shay, J. W. Telomerase activity in human germline and embryonic tissues and cells. Dev. Genet. 18, 173–179 (1996).

    CAS  PubMed  Google Scholar 

  8. Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990). This report links increasing telomere attrition with increased cell divisions and advancing age, suggesting that telomere shortening may be the underlying mechanism of the Hayflick limit.

    CAS  PubMed  Google Scholar 

  9. Allsopp, R. C. et al. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl Acad. Sci. USA 89, 10114–10118 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Harley, C. B. et al. Telomerase, cell immortality, and cancer. Cold Spring Harb. Symp. Quant. Biol. 59, 307–315 (1994).

    CAS  PubMed  Google Scholar 

  11. Blasco, M. A. Telomere length, stem cells and aging. Nature Chem. Biol. 3, 640–649 (2007).

    CAS  Google Scholar 

  12. Griffith, J. D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 (1999).

    CAS  PubMed  Google Scholar 

  13. de Lange, T. T-loops and the origin of telomeres. Nature Rev. Mol. Cell Biol. 5, 323–329 (2004).

    CAS  Google Scholar 

  14. McClintock, B. the stability of broken ends of chromosomes in Zea Mays. Genetics 26, 234–282 (1941).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005).

    CAS  PubMed  Google Scholar 

  16. Liu, D., O'Connor, M. S., Qin, J. & Songyang, Z. Telosome, a mammalian telomere-associated complex formed by multiple telomeric proteins. J. Biol. Chem. 279, 51338–51342 (2004).

    CAS  PubMed  Google Scholar 

  17. Verdun, R. E. & Karlseder, J. Replication and protection of telomeres. Nature 447, 924–931 (2007).

    CAS  PubMed  Google Scholar 

  18. Corneo, B. et al. Rag mutations reveal robust alternative end joining. Nature 449, 483–486 (2007).

    CAS  PubMed  Google Scholar 

  19. Yan, C. T. et al. IgH class switching and translocations use a robust non-classical end-joining pathway. Nature 449, 478–482 (2007).

    CAS  PubMed  Google Scholar 

  20. Capper, R. et al. The nature of telomere fusion and a definition of the critical telomere length in human cells. Genes Dev. 21, 2495–2508 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. DePinho, R. A. & Polyak, K. Cancer chromosomes in crisis. Nature Genet. 36, 932–934 (2004).

    CAS  PubMed  Google Scholar 

  22. d'Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

    CAS  PubMed  Google Scholar 

  23. Takai, H., Smogorzewska, A. & de Lange, T. DNA damage foci at dysfunctional telomeres. Curr. Biol. 13, 1549–1556 (2003). References 22 and 23 report that dysfunctional telomeres activate a DDR, resulting in the accumulation of DDR proteins at telomeres. Cells with dysfunctional telomeres enter into senescence by activating a p53-dependent checkpoint response.

    CAS  PubMed  Google Scholar 

  24. Wright, W. E. & Shay, J. W. The two-stage mechanism controlling cellular senescence and immortalization. Exp. Gerontol. 27, 383–389 (1992). This paper documents that DNA damage checkpoint proteins such as p53 and RB are required for cells with shortened telomeres to undergo cellular senescence. Elimination of these proteins enables these cells to immortalize.

    CAS  PubMed  Google Scholar 

  25. Kamijo, T. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91, 649–659 (1997).

    CAS  PubMed  Google Scholar 

  26. Sage, J., Miller, A. L., Perez-Mancera, P. A., Wysocki, J. M. & Jacks, T. Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature 424, 223–228 (2003).

    CAS  PubMed  Google Scholar 

  27. Guo, X. et al. Dysfunctional telomeres activate an ATM–ATR-dependent DNA damage response to suppress tumorigenesis. EMBO J. 26, 4709–4719 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Churikov, D. & Price, C. M. Pot1 and cell cycle progression cooperate in telomere length regulation. Nature Struct. Mol. Biol. 15, 79–84 (2008).

    CAS  Google Scholar 

  29. Gire, V., Roux, P., Wynford-Thomas, D., Brondello, J. M. & Dulic, V. DNA damage checkpoint kinase Chk2 triggers replicative senescence. EMBO J. 23, 2554–2563 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Denchi, E. L. & de Lange, T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448, 1068–1071 (2007).

    CAS  PubMed  Google Scholar 

  31. Lee, H. W. et al. Essential role of mouse telomerase in highly proliferative organs. Nature 392, 569–574 (1998).

    CAS  PubMed  Google Scholar 

  32. Rudolph, K. L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96, 701–712 (1999).

    CAS  PubMed  Google Scholar 

  33. Rajaraman, S. et al. Telomere uncapping in progenitor cells with critical telomere shortening is coupled to S-phase progression in vivo. Proc. Natl Acad. Sci. USA 104, 17747–17752 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hara, E., Tsurui, H., Shinozaki, A., Nakada, S. & Oda, K. Cooperative effect of antisense-Rb and antisense-p53 oligomers on the extension of life span in human diploid fibroblasts, TIG-1. Biochem. Biophys. Res. Commun. 179, 528–534 (1991).

    CAS  PubMed  Google Scholar 

  35. Shay, J. W., Pereira-Smith, O. M. & Wright, W. E. A role for both RB and p53 in the regulation of human cellular senescence. Exp. Cell Res. 196, 33–39 (1991).

    CAS  PubMed  Google Scholar 

  36. Counter, C. M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shay, J. W., Van Der Haegen, B. A., Ying, Y. & Wright, W. E. The frequency of immortalization of human fibroblasts and mammary epithelial cells transfected with SV40 large T-antigen. Exp. Cell Res. 209, 45–52 (1993).

    CAS  PubMed  Google Scholar 

  38. Kim, N. W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    CAS  PubMed  Google Scholar 

  39. Bryan, T. M., Englezou, A., Dalla-Pozza, L., Dunham, M. A. & Reddel, R. R. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nature Med. 3, 1271–1274 (1997).

    CAS  PubMed  Google Scholar 

  40. Shay, J. W. & Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer 33, 787–791 (1997).

    CAS  PubMed  Google Scholar 

  41. Blasco, M. A., Funk, W., Villeponteau, B. & Greider, C. W. Functional characterization and developmental regulation of mouse telomerase RNA. Science 269, 1267–1270 (1995).

    CAS  PubMed  Google Scholar 

  42. Blasco, M. A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997).

    CAS  PubMed  Google Scholar 

  43. Herrera, E., Martinez, A. C. & Blasco, M. A. Impaired germinal center reaction in mice with short telomeres. EMBO J. 19, 472–481 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Flores, I. et al. The longest telomeres: a general signature of adult stem cell compartments. Genes Dev. 22, 654–667 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rossi, D. J. et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447, 725–729 (2007).

    CAS  PubMed  Google Scholar 

  46. Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527–538 (1999).

    CAS  PubMed  Google Scholar 

  47. Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 641–645 (2000).

    CAS  PubMed  Google Scholar 

  48. Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996).

    CAS  PubMed  Google Scholar 

  49. Greenberg, R. A. et al. Short dysfunctional telomeres impair tumorigenesis in the INK4aΔ2/3 cancer-prone mouse. Cell 97, 515–525 (1999).

    CAS  PubMed  Google Scholar 

  50. Gonzalez-Suarez, E., Samper, E., Flores, J. M. & Blasco, M. A. Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nature Genet. 26, 114–117 (2000).

    CAS  PubMed  Google Scholar 

  51. Rudolph, K. L., Millard, M., Bosenberg, M. W. & DePinho, R. A. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nature Genet. 28, 155–159 (2001).

    CAS  PubMed  Google Scholar 

  52. Dove, W. F. et al. The intestinal epithelium and its neoplasms: genetic, cellular and tissue interactions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 915–923 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Farazi, P. A. et al. Differential impact of telomere dysfunction on initiation and progression of hepatocellular carcinoma. Cancer Res. 63, 5021–5027 (2003).

    CAS  PubMed  Google Scholar 

  54. Collado, M. et al. Tumour biology: senescence in premalignant tumours. Nature 436, 642 (2005).

    CAS  PubMed  Google Scholar 

  55. Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660–665 (2005).

    CAS  PubMed  Google Scholar 

  56. Collado, M., Blasco, M. A. & Serrano, M. Cellular senescence in cancer and aging. Cell 130, 223–233 (2007).

    CAS  PubMed  Google Scholar 

  57. Feldser, D. M. & Greider, C. W. Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell 11, 461–469 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cosme-Blanco, W. et al. Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep. 8, 497–503 (2007). Using telomerase-knockout mouse models in a setting in which the apoptotic function of p53 is eliminated, references 57 and 58 document for the first time that activation of the cellular senescence programme could potently inhibit tumour initiation and progression in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu, G. et al. Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nature Genet. 36, 63–68 (2004).

    CAS  PubMed  Google Scholar 

  60. Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).

    CAS  PubMed  Google Scholar 

  61. Choudhury, A. R. et al. Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nature Genet. 39, 99–105 (2007).

    CAS  PubMed  Google Scholar 

  62. Finkel, T., Serrano, M. & Blasco, M. A. The common biology of cancer and ageing. Nature 448, 767–774 (2007).

    CAS  PubMed  Google Scholar 

  63. Harley, C. B. Telomerase and cancer therapeutics. Nature Rev. Cancer 8, 167–179 (2008).

    CAS  Google Scholar 

  64. Shay, J. W. & Keith, W. N. Targeting telomerase for cancer therapeutics. Br. J. Cancer 98, 677–683 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Damm, K. et al. A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J. 20, 6958–6968 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Dikmen, Z. G. et al. In vivo inhibition of lung cancer by GRN163L: a novel human telomerase inhibitor. Cancer Res. 65, 7866–7873 (2005).

    CAS  PubMed  Google Scholar 

  67. Djojosubroto, M. W. et al. Telomerase antagonists GRN163 and GRN163L inhibit tumor growth and increase chemosensitivity of human hepatoma. Hepatology 42, 1127–1136 (2005).

    CAS  PubMed  Google Scholar 

  68. Hochreiter, A. E. et al. Telomerase template antagonist GRN163L disrupts telomere maintenance, tumor growth, and metastasis of breast cancer. Clin. Cancer Res. 12, 3184–3192 (2006).

    CAS  PubMed  Google Scholar 

  69. Jackson, S. R. et al. Antiadhesive effects of GRN163L — an oligonucleotide N3′→P5′ thio-phosphoramidate targeting telomerase. Cancer Res. 67, 1121–1129 (2007).

    CAS  PubMed  Google Scholar 

  70. Ozawa, T. et al. Antitumor effects of specific telomerase inhibitor GRN163 in human glioblastoma xenografts. Neuro Oncol. 6, 218–226 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Salvati, E. et al. Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect. J. Clin. Invest. 117, 3236–3247 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522 (2005).

    CAS  PubMed  Google Scholar 

  73. Chin, K. et al. In situ analyses of genome instability in breast cancer. Nature Genet. 36, 984–988 (2004).

    CAS  PubMed  Google Scholar 

  74. Meeker, A. K. et al. Telomere length abnormalities occur early in the initiation of epithelial carcinogenesis. Clin. Cancer Res. 10, 3317–3326 (2004).

    CAS  PubMed  Google Scholar 

  75. Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870 (2005).

    CAS  PubMed  Google Scholar 

  76. Gorgoulis, V. G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907–913 (2005).

    CAS  PubMed  Google Scholar 

  77. Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. Y. & Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl Acad. Sci. USA 98, 12072–12077 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Baumann, P. & Cech, T. R. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171–1175 (2001).

    CAS  PubMed  Google Scholar 

  79. He, H. et al. POT1b protects telomeres from end-to-end chromosomal fusions and aberrant homologous recombination. EMBO J. 25, 5180–5190 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Loayza, D. & De Lange, T. POT1 as a terminal transducer of TRF1 telomere length control. Nature 423, 1013–1018 (2003).

    CAS  PubMed  Google Scholar 

  81. Wu, L. et al. Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 126, 49–62 (2006).

    CAS  PubMed  Google Scholar 

  82. Wang, F. et al. The POT1–TPP1 telomere complex is a telomerase processivity factor. Nature 445, 506–510 (2007).

    CAS  PubMed  Google Scholar 

  83. Xin, H. et al. TPP1 is a homologue of ciliate TEBP-β and interacts with POT1 to recruit telomerase. Nature 445, 559–562 (2007).

    CAS  PubMed  Google Scholar 

  84. Hockemeyer, D., Daniels, J. P., Takai, H. & de Lange, T. Recent expansion of the telomeric complex in rodents: two distinct POT1 proteins protect mouse telomeres. Cell 126, 63–77 (2006).

    CAS  PubMed  Google Scholar 

  85. Hockemeyer, D. et al. Telomere protection by mammalian Pot1 requires interaction with Tpp1. Nature Struct. Mol. Biol. 14, 754–761 (2007).

    CAS  Google Scholar 

  86. Celli, G. B. & de Lange, T. DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nature Cell Biol. 7, 712–718 (2005).

    CAS  PubMed  Google Scholar 

  87. Chiang, Y. J., Kim, S. H., Tessarollo, L., Campisi, J. & Hodes, R. J. Telomere-associated protein TIN2 is essential for early embryonic development through a telomerase-independent pathway. Mol. Cell Biol. 24, 6631–6634 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Munoz, P., Blanco, R. & Blasco, M. A. Role of the TRF2 telomeric protein in cancer and ageing. Cell Cycle 5, 718–721 (2006).

    CAS  PubMed  Google Scholar 

  89. Kim, W. Y. & Sharpless, N. E. The regulation of INK4/ARF in cancer and aging. Cell 127, 265–275 (2006).

    CAS  PubMed  Google Scholar 

  90. Jacobs, J. J. & de Lange, T. Significant role for p16INK4A in p53-independent telomere-directed senescence. Curr. Biol. 14, 2302–2308 (2004).

    CAS  PubMed  Google Scholar 

  91. Herbig, U., Jobling, W. A., Chen, B. P., Chen, D. J. & Sedivy, J. M. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21CIP1, but not p16INK4a. Mol. Cell 14, 501–513 (2004).

    CAS  PubMed  Google Scholar 

  92. Smogorzewska, A. & de Lange, T. Different telomere damage signaling pathways in human and mouse cells. EMBO J. 21, 4338–4348 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Khoo, C. M., Carrasco, D. R., Bosenberg, M. W., Paik, J. H. & Depinho, R. A. Ink4a/Arf tumor suppressor does not modulate the degenerative conditions or tumor spectrum of the telomerase-deficient mouse. Proc. Natl Acad. Sci. USA 104, 3931–3936 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Siegl-Cachedenier, I., Munoz, P., Flores, J. M., Klatt, P. & Blasco, M. A. Deficient mismatch repair improves organismal fitness and survival of mice with dysfunctional telomeres. Genes Dev. 21, 2234–2247 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Qi, L. et al. Short telomeres and ataxia-telangiectasia mutated deficiency cooperatively increase telomere dysfunction and suppress tumorigenesis. Cancer Res. 63, 8188–8196 (2003).

    CAS  PubMed  Google Scholar 

  96. Wong, K. K. et al. Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature 421, 643–648 (2003).

    CAS  PubMed  Google Scholar 

  97. Maser, R. S. et al. Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 447, 966–971 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Blanco, R., Munoz, P., Flores, J. M., Klatt, P. & Blasco, M. A. Telomerase abrogation dramatically accelerates TRF2-induced epithelial carcinogenesis. Genes Dev. 21, 206–220 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.C acknowledges generous financial support from the NIA (RO1 AG028888), the NCI (RO1 CA129037), the Welch Foundation, the Elsa U. Pardee Foundation, the Sydney Kimmel Foundation for Cancer Research, the Abraham and Phyllis Katz Foundation, and the Michael Kadoorie Cancer Genetic Research Program. Y.D. is supported by a NCI Howard Temin Award (1K01CA124461) and S.S.C is supported by a NIH Predoctoral Training Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandy Chang.

Related links

Related links

DATABASES

National Cancer Institute

breast carcinoma

HCC

skin carcinoma

SCC

National Cancer Institute Drug Dictionary

GRN163L

FURTHER INFORMATION

S. Chang's homepage

Glossary

Breakage–fusion–bridge cycle

Chromosomal ends with critically shortened telomeres are highly recombinogenic, and undergo repeated cycles of end-to-end fusions, followed by random breakage, and then subsequent fusions to generate loss of heterozygosity or amplification of certain chromosomal loci.

Dicentric chromosome

A chromosome that has two centromeres, formed by breakage and reunion of two chromosomes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, Y., Chan, S. & Chang, S. Telomere dysfunction and tumour suppression: the senescence connection. Nat Rev Cancer 8, 450–458 (2008). https://doi.org/10.1038/nrc2393

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2393

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing