Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ubiquitin ligases in oncogenic transformation and cancer therapy

Key Points

  • Ubiquitin ligases (E3s) are deregulated in cancer through diverse mechanisms, resulting in altered expression and/or activity of their target proteins.

  • Deregulated E3s contribute to uncontrolled proliferation and genomic instability that drive malignant transformation, tumour progression and therapy resistance.

  • E3s regulate major growth-promoting pathways, including those targeted by current anticancer therapies such as the MAPK or PI3K–AKT–mTOR pathways.

  • By modulating the cellular response to stress, E3s orchestrate a balance between cell growth and survival signals, which control tumour initiation and progression.

  • Cancer-associated E3s affect transcription by modulating the abundance and activity of transcriptional activators, the binding of transcriptional activators to DNA and the formation of transcriptional complexes at genes and by regulating chromatin structure.

  • E3s are important regulators of mitochondrial and receptor-mediated apoptotic and necroptotic pathways; deregulation of these pathways confers a survival advantage to cancer cells.

  • Targeting E3s is one of the more challenging areas in drug development. Increasing our understanding of their structures (that is, their crystal structures) on their own or as part of E3 complexes and of the modifications that regulate the spatial and temporal activity of E3s is expected to guide the development of biologics and small-molecule inhibitors for this class of proteins.

Abstract

The cellular response to external stress signals and DNA damage depends on the activity of ubiquitin ligases (E3s), which regulate numerous cellular processes, including homeostasis, metabolism and cell cycle progression. E3s recognize, interact with and ubiquitylate protein substrates in a temporally and spatially regulated manner. The topology of the ubiquitin chains dictates the fate of the substrates, marking them for recognition and degradation by the proteasome or altering their subcellular localization or assembly into functional complexes. Both genetic and epigenetic alterations account for the deregulation of E3s in cancer. Consequently, the stability and/or activity of E3 substrates are also altered, in some cases leading to downregulation of tumour-suppressor activities and upregulation of oncogenic activities. A better understanding of the mechanisms underlying E3 regulation and function in tumorigenesis is expected to identify novel prognostic markers and to enable the development of the next generation of anticancer therapies. This Review summarizes the oncogenic and tumour-suppressor roles of selected E3s and highlights novel opportunities for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms underlying deregulated ubiquitylation in cancer.
Figure 2: Cellular processes affected by deregulated ubiquitylation in cancer.
Figure 3: Ubiquitin ligases coordinate the cell cycle and DNA damage repair to maintain genome integrity.
Figure 4: Regulation of mitotic signalling by ubiquitin ligases.
Figure 5: Ubiquitin ligases regulate the intrinsic and extrinsic apoptotic pathways.

Similar content being viewed by others

References

  1. Gross, S., Rahal, R., Stransky, N., Lengauer, C. & Hoeflich, K. P. Targeting cancer with kinase inhibitors. J. Clin. Invest. 125, 1780–1789 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Duan, G. & Walther, D. The roles of post-translational modifications in the context of protein interaction networks. PLoS Comput. Biol. 11, e1004049 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ciechanover, A. The unravelling of the ubiquitin system. Nat. Rev. Mol. Cell Biol. 16, 322–324 (2015). This is a timely updated essay on the fundamentals of the ubiquitin system.

    Article  CAS  PubMed  Google Scholar 

  4. Foot, N., Henshall, T. & Kumar, S. Ubiquitination and the regulation of membrane proteins. Physiol. Rev. 97, 253–281 (2017).

    Article  PubMed  Google Scholar 

  5. Khaminets, A., Behl, C. & Dikic, I. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol. 26, 6–16 (2016). This is a detailed review on the regulation of autophagy by ubiquitin-related and non-related pathways.

    Article  CAS  PubMed  Google Scholar 

  6. Cohen-Kaplan, V. et al. p62- and ubiquitin-dependent stress-induced autophagy of the mammalian 26S proteasome. Proc. Natl Acad. Sci. USA 113, E7490–E7499 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hjerpe, R. et al. UBQLN2 mediates autophagy-independent protein aggregate clearance by the proteasome. Cell 166, 935–949 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Popovic, D., Vucic, D. & Dikic, I. Ubiquitination in disease pathogenesis and treatment. Nat. Med. 20, 1242–1253 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Husnjak, K. & Dikic, I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 81, 291–322 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Yau, R. & Rape, M. The increasing complexity of the ubiquitin code. Nat. Cell Biol. 18, 579–586 (2016).

    Article  PubMed  CAS  Google Scholar 

  11. Qi, J. & Ronai, Z. A. Dysregulation of ubiquitin ligases in cancer. Drug Resist. Updat. 23, 1–11 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Geng, C. et al. Prostate cancer-associated mutations in speckle-type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover. Proc. Natl Acad. Sci. USA 110, 6997–7002 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, G. et al. SPOP promotes tumorigenesis by acting as a key regulatory hub in kidney cancer. Cancer Cell 25, 455–468 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Abbas, T., Keaton, M. A. & Dutta, A. Genomic instability in cancer. Cold Spring Harb. Perspect. Biol. 5, a012914 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Garcia-Higuera, I. et al. Genomic stability and tumour suppression by the APC/C cofactor Cdh1. Nat. Cell Biol. 10, 802–811 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Greil, C. et al. The role of APC/CCdh1 in replication stress and origin of genomic instability. Oncogene 35, 3062–3070 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Brito, D. A. & Rieder, C. L. Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr. Biol. 16, 1194–1200 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Huang, H. C., Shi, J., Orth, J. D. & Mitchison, T. J. Evidence that mitotic exit is a better cancer therapeutic target than spindle assembly. Cancer Cell 16, 347–358 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Manchado, E. et al. Targeting mitotic exit leads to tumor regression in vivo: modulation by Cdk1, Mastl, and the PP2A/B55α,δ phosphatase. Cancer Cell 18, 641–654 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Zeng, X. et al. Pharmacologic inhibition of the anaphase-promoting complex induces a spindle checkpoint-dependent mitotic arrest in the absence of spindle damage. Cancer Cell 18, 382–395 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Sackton, K. L. et al. Synergistic blockade of mitotic exit by two chemical inhibitors of the APC/C. Nature 514, 646–649 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Fujimitsu, K., Grimaldi, M. & Yamano, H. Cyclin-dependent kinase 1-dependent activation of APC/C ubiquitin ligase. Science 352, 1121–1124 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Qiao, R. et al. Mechanism of APC/CCDC20 activation by mitotic phosphorylation. Proc. Natl Acad. Sci. USA 113, E2570–E2578 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grim, J. E. et al. Fbw7 and p53 cooperatively suppress advanced and chromosomally unstable intestinal cancer. Mol. Cell. Biol. 32, 2160–2167 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Rajagopalan, H. et al. Inactivation of hCDC4 can cause chromosomal instability. Nature 428, 77–81 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Mao, J. H. et al. Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature 432, 775–779 (2004). This is the first study to point to the role of FBXW7 as a tumour suppressor.

    Article  CAS  PubMed  Google Scholar 

  27. Carrano, A. C., Eytan, E., Hershko, A. & Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat. Cell Biol. 1, 193–199 (1999). This study is among the most important examples demonstrating the crucial role of E3s in cell cycle regulation, in this case, the role of SCF–SKP2.

    Article  CAS  PubMed  Google Scholar 

  28. Carrano, A. C. & Pagano, M. Role of the F-box protein Skp2 in adhesion-dependent cell cycle progression. J. Cell Biol. 153, 1381–1390 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Latres, E. et al. Role of the F-box protein Skp2 in lymphomagenesis. Proc. Natl Acad. Sci. USA 98, 2515–2520 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Loda, M. et al. Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat. Med. 3, 231–234 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Shim, E. H. et al. Expression of the F-box protein SKP2 induces hyperplasia, dysplasia, and low-grade carcinoma in the mouse prostate. Cancer Res. 63, 1583–1588 (2003).

    CAS  PubMed  Google Scholar 

  32. Delogu, S. et al. SKP2 cooperates with N-Ras or AKT to induce liver tumor development in mice. Oncotarget 6, 2222–2234 (2015).

    Article  PubMed  Google Scholar 

  33. Lin, H. K. et al. Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature 464, 374–379 (2010). This study establishes the regulation of cellular senescence by SCF–SKP2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Zhao, H. et al. Skp2 deletion unmasks a p27 safeguard that blocks tumorigenesis in the absence of pRb and p53 tumor suppressors. Cancer Cell 24, 645–659 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Busino, L. et al. Degradation of Cdc25A by β-TrCP during S phase and in response to DNA damage. Nature 426, 87–91 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Kee, Y., Kim, J. M. & D'Andrea, A. D. Regulated degradation of FANCM in the Fanconi anemia pathway during mitosis. Genes Dev. 23, 555–560 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kruiswijk, F. et al. Coupled activation and degradation of eEF2K regulates protein synthesis in response to genotoxic stress. Sci. Signal. 5, ra40 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Peschiaroli, A. et al. SCFβTrCP-mediated degradation of claspin regulates recovery from the DNA replication checkpoint response. Mol. Cell 23, 319–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Watanabe, N. et al. M-Phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFβ-TrCP. Proc. Natl Acad. Sci. USA 101, 4419–4424 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Inuzuka, H. et al. Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCFβ-TRCP ubiquitin ligase. Cancer Cell 18, 147–159 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Winston, J. T. et al. The SCFβ-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev. 13, 270–283 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Tsai, W. B. et al. Inhibition of FOXO3 tumor suppressor function by βTrCP1 through ubiquitin-mediated degradation in a tumor mouse model. PLoS ONE 5, e11171 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Nakagawa, T. et al. S6 kinase- and β-TrCP2-dependent degradation of p19Arf is required for cell proliferation. Mol. Cell. Biol. 35, 3517–3527 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Westbrook, T. F. et al. SCFβ-TRCP controls oncogenic transformation and neural differentiation through REST degradation. Nature 452, 370–374 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Li, C. W. et al. AKT1 inhibits epithelial-to-mesenchymal transition in breast cancer through phosphorylation-dependent twist1 degradation. Cancer Res. 76, 1451–1462 (2016). This study establishes that ubiquitin controls the epithelial-to-mesenchymal transition (EMT) by demonstrating that SCF– β -TRCP marks TWIST1 for degradation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Jiang, J. & Struhl, G. Regulation of the hedgehog and wingless signalling pathways by the F-box/WD40-repeat protein slimb. Nature 391, 493–496 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Gong, Y. et al. Pan-cancer genetic analysis identifies PARK2 as a master regulator of G1/S cyclins. Nat. Genet. 46, 588–594 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Lee, S. B. et al. Parkin regulates mitosis and genomic stability through Cdc20/Cdh1. Mol. Cell 60, 21–34 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Poulogiannis, G. et al. PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice. Proc. Natl Acad. Sci. USA 107, 15145–15150 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Veeriah, S. et al. Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies. Nat. Genet. 42, 77–82 (2010). This is the first study demonstrating that PARK2 mutations occur frequently in cancer and suggests a tumour suppressor function for parkin.

    Article  CAS  PubMed  Google Scholar 

  52. Yeo, C. W. et al. Parkin pathway activation mitigates glioma cell proliferation and predicts patient survival. Cancer Res. 72, 2543–2553 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Pickrell, A. M. & Youle, R. J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85, 257–273 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Bernardini, J. P., Lazarou, M. & Dewson, G. Parkin and mitophagy in cancer. Oncogene 36, 1315–1327 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Wade, M., Li, Y. C. & Wahl, G. M. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat. Rev. Cancer 13, 83–96 (2013). This Review provides a comprehensive overview of the p53 E3s MDM2 and MDMX.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Savage, K. I. & Harkin, D. P. BRCA1, a 'complex' protein involved in the maintenance of genomic stability. FEBS J. 282, 630–646 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, B., Golding, B. T. & Hardcastle, I. R. Small-molecule MDM2-p53 inhibitors: recent advances. Future Med. Chem. 7, 631–645 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Zhao, Y., Aguilar, A., Bernard, D. & Wang, S. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction (MDM2 Inhibitors) in clinical trials for cancer treatment. J. Med. Chem. 58, 1038–1052 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Ruffner, H., Joazeiro, C. A., Hemmati, D., Hunter, T. & Verma, I. M. Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc. Natl Acad. Sci. USA 98, 5134–5139 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Drost, R. et al. BRCA1 RING function is essential for tumor suppression but dispensable for therapy resistance. Cancer Cell 20, 797–809 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Shakya, R. et al. BRCA1 tumor suppression depends on BRCT phosphoprotein binding, but not its E3 ligase activity. Science 334, 525–528 (2011). This is an important study that demonstrates in three different mouse models that the BRCA1 RING domain, and thus its ligase activity, is dispensable for tumour suppression.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Schwertman, P., Bekker-Jensen, S. & Mailand, N. Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers. Nat. Rev. Mol. Cell Biol. 17, 379–394 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Lafranchi, L. et al. APC/CCdh1 controls CtIP stability during the cell cycle and in response to DNA damage. EMBO J. 33, 2860–2879 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Orthwein, A. et al. A mechanism for the suppression of homologous recombination in G1 cells. Nature 528, 422–426 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Lord, C. J. & Ashworth, A. BRCAness revisited. Nat. Rev. Cancer 16, 110–120 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Wiltshire, T. D. et al. Sensitivity to poly(ADP-ribose) polymerase (PARP) inhibition identifies ubiquitin-specific peptidase 11 (USP11) as a regulator of DNA double-strand break repair. J. Biol. Chem. 285, 14565–14571 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Zhang, Q. et al. FBXW7 facilitates nonhomologous end-joining via K63-linked polyubiquitylation of XRCC4. Mol. Cell 61, 419–433 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Mendoza, M. C., Er, E. E. & Blenis, J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem. Sci. 36, 320–328 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Zeng, T. et al. Impeded Nedd4-1-mediated Ras degradation underlies Ras-driven tumorigenesis. Cell Rep. 7, 871–882 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Wang, X. et al. NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 128, 129–139 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Xu, L., Lubkov, V., Taylor, L. J. & Bar-Sagi, D. Feedback regulation of Ras signaling by Rabex-5-mediated ubiquitination. Curr. Biol. 20, 1372–1377 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Baietti, M. F. et al. OTUB1 triggers lung cancer development by inhibiting RAS monoubiquitination. EMBO Mol. Med. 8, 288–303 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Sasaki, A. T. et al. Ubiquitination of K-Ras enhances activation and facilitates binding to select downstream effectors. Sci. Signal. 4, ra13 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Baker, R. et al. Site-specific monoubiquitination activates Ras by impeding GTPase-activating protein function. Nat. Struct. Mol. Biol. 20, 46–52 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Baker, R. et al. Differences in the regulation of K-Ras and H-Ras isoforms by monoubiquitination. J. Biol. Chem. 288, 36856–36862 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Hong, S. W. et al. Ring finger protein 149 is an E3 ubiquitin ligase active on wild-type v-Raf murine sarcoma viral oncogene homolog B1 (BRAF). J. Biol. Chem. 287, 24017–24025 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. de la Cova, C. & Greenwald, I. SEL-10/Fbw7-dependent negative feedback regulation of LIN-45/Braf signaling in C. elegans via a conserved phosphodegron. Genes Dev. 26, 2524–2535 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Hernandez, M. A. et al. Regulation of BRAF protein stability by a negative feedback loop involving the MEK-ERK pathway but not the FBXW7 tumour suppressor. Cell Signal. 28, 561–571 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Grbovic, O. M. et al. V600E B-Raf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors. Proc. Natl Acad. Sci. USA 103, 57–62 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Samant, R. S., Clarke, P. A. & Workman, P. E3 ubiquitin ligase cullin-5 modulates multiple molecular and cellular responses to heat shock protein 90 inhibition in human cancer cells. Proc. Natl Acad. Sci. USA 111, 6834–6839 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wan, L. et al. The APC/C E3 ligase complex activator FZR1 restricts BRAF oncogenic function. Cancer Discov. 7, 424–441 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Kuchay, S. et al. FBXL2- and PTPL1-mediated degradation of p110-free p85β regulatory subunit controls the PI(3)K signalling cascade. Nat. Cell Biol. 15, 472–480 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Lin, D. C. et al. Genomic and functional analysis of the E3 ligase PARK2 in glioma. Cancer Res. 75, 1815–1827 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Gupta, A. et al. PARK2 depletion connects energy and oxidative stress to PI3K/Akt activation via PTEN S-nitrosylation. Mol. Cell 65, 999–1013.e7 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Chan, C. H. et al. The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell 149, 1098–1111 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Chan, C. H. et al. Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell 154, 556–568 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Lin, H. K. et al. Phosphorylation-dependent regulation of cytosolic localization and oncogenic function of Skp2 by Akt/PKB. Nat. Cell Biol. 11, 420–432 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Gao, D. et al. Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nat. Cell Biol. 11, 397–408 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Inuzuka, H. et al. Acetylation-dependent regulation of Skp2 function. Cell 150, 179–193 (2012). This study establishes that SKP2 acetylation regulates its stability and subcellular localization.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Zhang, S. et al. Hippo signaling suppresses cell ploidy and tumorigenesis through Skp2. Cancer Cell 31, 669–684.e7 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Mao, J. H. et al. FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression. Science 321, 1499–1502 (2008). This is the first study to point to the regulation of mTOR stability by the tumour suppressor SCF–FBXW7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Linares, J. F. et al. K63 polyubiquitination and activation of mTOR by the p62-TRAF6 complex in nutrient-activated cells. Mol. Cell 51, 283–296 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Wang, B. et al. TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Nature 545, 365–369 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Khurana, A. et al. Regulation of the ring finger E3 ligase Siah2 by p38 MAPK. J. Biol. Chem. 281, 35316–35326 (2006).

    Article  PubMed  CAS  Google Scholar 

  97. Nakayama, K. et al. Siah2 regulates stability of prolyl-hydroxylases, controls HIF1α abundance, and modulates physiological responses to hypoxia. Cell 117, 941–952 (2004). This study establishes the role of SIAH2 in the control of prolyl hydroxylases with a concomitant effect on the hypoxia master regulator HIF1 α.

    Article  CAS  PubMed  Google Scholar 

  98. Calzado, M. A., de la Vega, L., Moller, A., Bowtell, D. D. & Schmitz, M. L. An inducible autoregulatory loop between HIPK2 and Siah2 at the apex of the hypoxic response. Nat. Cell Biol. 11, 85–91 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Senft, D. & Ronai, Z. A. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem. Sci. 40, 141–148 (2015). This is a detailed review on the role of ubiquitin in the UPR with implications for autophagy and mitochondrial function.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Perez, M. et al. Mutual regulation between SIAH2 and DYRK2 controls hypoxic and genotoxic signaling pathways. J. Mol. Cell Biol. 4, 316–330 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Ma, B. et al. Hypoxia regulates hippo signalling through the SIAH2 ubiquitin E3 ligase. Nat. Cell Biol. 17, 95–103 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Qi, J. et al. Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors. Cancer Cell 18, 23–38 (2010). This study defines the mechanisms underlying the ability of SIAH2 to control the formation of neuroendocrine prostate cancer.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Qi, J. et al. The ubiquitin ligase Siah2 regulates tumorigenesis and metastasis by HIF-dependent and -independent pathways. Proc. Natl Acad. Sci. USA 105, 16713–16718 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wong, C. S. et al. Vascular normalization by loss of Siah2 results in increased chemotherapeutic efficacy. Cancer Res. 72, 1694–1704 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Malz, M. et al. Nuclear accumulation of seven in absentia homologue-2 supports motility and proliferation of liver cancer cells. Int. J. Cancer 131, 2016–2026 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Shah, M. et al. Inhibition of Siah2 ubiquitin ligase by vitamin K3 (menadione) attenuates hypoxia and MAPK signaling and blocks melanoma tumorigenesis. Pigment Cell Melanoma Res. 22, 799–808 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Scortegagna, M. et al. Fine tuning of the UPR by the ubiquitin ligases Siah1/2. PLoS Genet. 10, e1004348 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Schmidt, R. L. et al. Inhibition of RAS-mediated transformation and tumorigenesis by targeting the downstream E3 ubiquitin ligase seven in absentia homologue. Cancer Res. 67, 11798–11810 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Cullinan, S. B., Gordan, J. D., Jin, J., Harper, J. W. & Diehl, J. A. The keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-keap1 ligase. Mol. Cell. Biol. 24, 8477–8486 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Zhang, D. D., Lo, S. C., Cross, J. V., Templeton, D. J. & Hannink, M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol. Cell. Biol. 24, 10941–10953 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Furukawa, M. & Xiong, Y. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol. Cell. Biol. 25, 162–171 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Gorrini, C., Harris, I. S. & Mak, T. W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931–947 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Senft, D. & Ronai, Z. A. Adaptive stress responses during tumor metastasis and dormancy. Trends Cancer 2, 429–442 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012).

  115. Kim, Y. et al. Integrative and comparative genomic analysis of lung squamous cell carcinomas in East Asian patients. J. Clin. Oncol. 32, 121–128 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Sato, Y. et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet. 45, 860–867 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Cleary, S. P. et al. Identification of driver genes in hepatocellular carcinoma by exome sequencing. Hepatology 58, 1693–1702 (2013).

    Article  PubMed  CAS  Google Scholar 

  118. Muscarella, L. A. et al. Frequent epigenetics inactivation of KEAP1 gene in non-small cell lung cancer. Epigenetics 6, 710–719 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Singh, A. et al. Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med. 3, e420 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Li, Q. K., Singh, A., Biswal, S., Askin, F. & Gabrielson, E. KEAP1 gene mutations and NRF2 activation are common in pulmonary papillary adenocarcinoma. J. Hum. Genet. 56, 230–234 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Muscarella, L. A. et al. Regulation of KEAP1 expression by promoter methylation in malignant gliomas and association with patient's outcome. Epigenetics 6, 317–325 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Hanada, N. et al. Methylation of the KEAP1 gene promoter region in human colorectal cancer. BMC Cancer 12, 66 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Barbano, R. et al. Aberrant Keap1 methylation in breast cancer and association with clinicopathological features. Epigenetics 8, 105–112 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Kim, Y. R. et al. Oncogenic NRF2 mutations in squamous cell carcinomas of oesophagus and skin. J. Pathol. 220, 446–451 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Jeong, Y. et al. Role of KEAP1/NRF2 and TP53 mutations in lung squamous cell carcinoma development and radiation resistance. Cancer Discov. 7, 86–101 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Adam, J. et al. Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 20, 524–537 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Ooi, A. et al. An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Cancer Cell 20, 511–523 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Tomlinson, I. P. et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genet. 30, 406–410 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Kroemer, G., Marino, G. & Levine, B. Autophagy and the integrated stress response. Mol. Cell 40, 280–293 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Lau, A. et al. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol. Cell. Biol. 30, 3275–3285 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Ichimura, Y. et al. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol. Cell 51, 618–631 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Pan, J. A. et al. TRIM21 ubiquitylates SQSTM1/p62 and suppresses protein sequestration to regulate redox homeostasis. Mol. Cell 61, 720–733 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Geng, F., Wenzel, S. & Tansey, W. P. Ubiquitin and proteasomes in transcription. Annu. Rev. Biochem. 81, 177–201 (2012). This is a detailed review on the role of E3s in the control of transcription.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Takeishi, S. et al. Ablation of Fbxw7 eliminates leukemia-initiating cells by preventing quiescence. Cancer Cell 23, 347–361 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Reavie, L. et al. Regulation of c-Myc ubiquitination controls chronic myelogenous leukemia initiation and progression. Cancer Cell 23, 362–375 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. King, B. et al. The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability. Cell 153, 1552–1566 (2013). This study exemplifies how E3s can modulate the activity of tumour-initiating cells, in this case, SCF–FBXW7-mediated MYC regulation in leukaemia-initiating cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Kim, E. J., Kim, S. H., Jin, X., Jin, X. & Kim, H. KCTD2, an adaptor of Cullin3 E3 ubiquitin ligase, suppresses gliomagenesis by destabilizing c-Myc. Cell Death Differ. 24, 649–659 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Inoue, S. et al. Mule/Huwe1/Arf-BP1 suppresses Ras-driven tumorigenesis by preventing c-Myc/Miz1-mediated down-regulation of p21 and p15. Genes Dev. 27, 1101–1114 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Dominguez-Brauer, C. et al. Mule regulates the intestinal stem cell niche via the Wnt pathway and targets EphB3 for proteasomal and lysosomal degradation. Cell Stem Cell 19, 205–216 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Myant, K. B. et al. HUWE1 is a critical colonic tumour suppressor gene that prevents MYC signalling, DNA damage accumulation and tumour initiation. EMBO Mol. Med. 9, 181–197 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. Geng, C. et al. SPOP regulates prostate epithelial cell proliferation and promotes ubiquitination and turnover of c-MYC oncoprotein. Oncogene 36, 4767–4777 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Kim, S. Y., Herbst, A., Tworkowski, K. A., Salghetti, S. E. & Tansey, W. P. Skp2 regulates Myc protein stability and activity. Mol. Cell 11, 1177–1188 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Welcker, M. et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc. Natl Acad. Sci. USA 101, 9085–9090 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Lin, C. Y. et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151, 56–67 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Adhikary, S. et al. The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell 123, 409–421 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Peter, S. et al. Tumor cell-specific inhibition of MYC function using small molecule inhibitors of the HUWE1 ubiquitin ligase. EMBO Mol. Med. 6, 1525–1541 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. von der Lehr, N. et al. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol. Cell 11, 1189–1200 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Jaenicke, L. A. et al. Ubiquitin-dependent turnover of MYC antagonizes MYC/PAF1C complex accumulation to drive transcriptional elongation. Mol. Cell 61, 54–67 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Le Gallo, M. et al. Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes. Nat. Genet. 44, 1310–1315 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. An, J., Wang, C., Deng, Y., Yu, L. & Huang, H. Destruction of full-length androgen receptor by wild-type SPOP, but not prostate-cancer-associated mutants. Cell Rep. 6, 657–669 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Gan, W. et al. SPOP promotes ubiquitination and degradation of the ERG oncoprotein to suppress prostate cancer progression. Mol. Cell 59, 917–930 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. An, J. et al. Truncated ERG oncoproteins from TMPRSS2-ERG fusions are resistant to SPOP-mediated proteasome degradation. Mol. Cell 59, 904–916 (2015).

    Article  CAS  PubMed  Google Scholar 

  153. Geng, C. et al. Androgen receptor is the key transcriptional mediator of the tumor suppressor SPOP in prostate cancer. Cancer Res. 74, 5631–5643 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Qi, J. et al. The E3 ubiquitin ligase Siah2 contributes to castration-resistant prostate cancer by regulation of androgen receptor transcriptional activity. Cancer Cell 23, 332–346 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Ndoja, A., Cohen, R. E. & Yao, T. Ubiquitin signals proteolysis-independent stripping of transcription factors. Mol. Cell 53, 893–903 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Landre, V. et al. Regulation of transcriptional activators by DNA-binding domain ubiquitination. Cell Death Differ. 24, 903–916 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Belle, J. I. & Nijnik, A. H2A-DUBbing the mammalian epigenome: expanding frontiers for histone H2A deubiquitinating enzymes in cell biology and physiology. Int. J. Biochem. Cell Biol. 50, 161–174 (2014).

    Article  CAS  PubMed  Google Scholar 

  158. Cole, A. J., Clifton-Bligh, R. & Marsh, D. J. Histone H2B monoubiquitination: roles to play in human malignancy. Endocr. Relat. Cancer 22, T19–T33 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Carroll, R. G., Hollville, E. & Martin, S. J. Parkin sensitizes toward apoptosis induced by mitochondrial depolarization through promoting degradation of Mcl-1. Cell Rep. 9, 1538–1553 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Harley, M. E., Allan, L. A., Sanderson, H. S. & Clarke, P. R. Phosphorylation of Mcl-1 by CDK1-cyclin B1 initiates its Cdc20-dependent destruction during mitotic arrest. EMBO J. 29, 2407–2420 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Ren, H. et al. The E3 ubiquitin ligases β-TrCP and FBXW7 cooperatively mediates GSK3-dependent Mcl-1 degradation induced by the Akt inhibitor API-1, resulting in apoptosis. Mol. Cancer 12, 146 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Wertz, I. E. et al. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature 471, 110–114 (2011).

    Article  CAS  PubMed  Google Scholar 

  163. Zhong, Q., Gao, W., Du, F. & Wang, X. Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 121, 1085–1095 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Inuzuka, H. et al. SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature 471, 104–109 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. He, L. et al. Mcl-1 and FBW7 control a dominant survival pathway underlying HDAC and Bcl-2 inhibitor synergy in squamous cell carcinoma. Cancer Discov. 3, 324–337 (2013).

    Article  CAS  PubMed  Google Scholar 

  166. Tong, J., Tan, S., Zou, F., Yu, J. & Zhang, L. FBW7 mutations mediate resistance of colorectal cancer to targeted therapies by blocking Mcl-1 degradation. Oncogene 36, 787–796 (2017). This study demonstrates the implication of the altered activity of E3s in the resistance to cancer therapy.

    Article  CAS  PubMed  Google Scholar 

  167. Akhoondi, S. et al. FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res. 67, 9006–9012 (2007).

    Article  CAS  PubMed  Google Scholar 

  168. Chapman, M. A. et al. Initial genome sequencing and analysis of multiple myeloma. Nature 471, 467–472 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Busino, L. et al. Fbxw7α- and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma. Nat. Cell Biol. 14, 375–385 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Liu, J. et al. Analysis of Drosophila segmentation network identifies a JNK pathway factor overexpressed in kidney cancer. Science 323, 1218–1222 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Guo, Z. Q. et al. Small-molecule targeting of E3 ligase adaptor SPOP in kidney cancer. Cancer Cell 30, 474–484 (2016).

    Article  CAS  PubMed  Google Scholar 

  172. Giorgi, C. et al. Mitochondrial Ca2+ and apoptosis. Cell Calcium 52, 36–43 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Kuchay, S. et al. PTEN counteracts FBXL2 to promote IP3R3- and Ca2+-mediated apoptosis limiting tumour growth. Nature 546, 554–558 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Bononi, A. et al. BAP1 regulates IP3R3-mediated Ca2+ flux to mitochondria suppressing cell transformation. Nature 546, 549–553 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Brenner, D., Blaser, H. & Mak, T. W. Regulation of tumour necrosis factor signalling: live or let die. Nat. Rev. Immunol. 15, 362–374 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Lork, M., Verhelst, K. & Beyaert, R. CYLD, A20 and OTULIN deubiquitinases in NF-κB signaling and cell death: so similar, yet so different. Cell Death Differ. 24, 1172–1183 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. von Karstedt, S., Montinaro, A. & Walczak, H. Exploring the TRAILs less travelled: TRAIL in cancer biology and therapy. Nat. Rev. Cancer 17, 352–366 (2017).

    Article  CAS  PubMed  Google Scholar 

  178. Henry, C. M. & Martin, S. J. Caspase-8 acts in a non-enzymatic role as a scaffold for assembly of a pro-inflammatory “FADDosome” complex upon TRAIL stimulation. Mol. Cell 65, 715–729.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  179. Lafont, E. et al. The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death. EMBO J. 36, 1147–1166 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. von Karstedt, S. et al. Cancer cell-autonomous TRAIL-R signaling promotes KRAS-driven cancer progression, invasion, and metastasis. Cancer Cell 27, 561–573 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Hartwig, T. et al. The TRAIL-induced cancer secretome promotes a tumor-supportive immune microenvironment via CCR2. Mol. Cell 65, 730–742.e5 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Landre, V., Rotblat, B., Melino, S., Bernassola, F. & Melino, G. Screening for E3-ubiquitin ligase inhibitors: challenges and opportunities. Oncotarget 5, 7988–8013 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Skaar, J. R., Pagan, J. K. & Pagano, M. SCF ubiquitin ligase-targeted therapies. Nat. Rev. Drug Discov. 13, 889–903 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Wu, L. et al. Specific small molecule inhibitors of Skp2-mediated p27 degradation. Chem. Biol. 19, 1515–1524 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Infante, J. R. et al. Phase I dose-escalation study of LCL161, an oral inhibitor of apoptosis proteins inhibitor, in patients with advanced solid tumors. J. Clin. Oncol. 32, 3103–3110 (2014).

    Article  CAS  PubMed  Google Scholar 

  186. Lai, A. C. & Crews, C. M. Induced protein degradation: an emerging drug discovery paradigm. Nat. Rev. Drug Discov. 16, 101–114 (2017).

    Article  CAS  PubMed  Google Scholar 

  187. Ogawara, Y. et al. Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J. Biol. Chem. 277, 21843–21850 (2002).

    Article  CAS  PubMed  Google Scholar 

  188. Chen, Z. J. Ubiquitination in signaling to and activation of IKK. Immunol. Rev. 246, 95–106 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Ciechanover, A. & Stanhill, A. The complexity of recognition of ubiquitinated substrates by the 26S proteasome. Biochim. Biophys. Acta 1843, 86–96 (2014).

    Article  CAS  PubMed  Google Scholar 

  190. Wauer, T., Simicek, M., Schubert, A. & Komander, D. Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature 524, 370–374 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Singh, N. & Singh, A. B. Deubiquitinases and cancer: a snapshot. Crit. Rev. Oncol. Hematol. 103, 22–26 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Braten, O. et al. Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination. Proc. Natl Acad. Sci. USA 113, E4639–E4647 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Zhang, X. et al. An interaction landscape of ubiquitin signaling. Mol. Cell 65, 941–955.e8 (2017).

    Article  CAS  PubMed  Google Scholar 

  194. Gossage, L., Eisen, T. & Maher, E. R. VHL, the story of a tumour suppressor gene. Nat. Rev. Cancer 15, 55–64 (2015).

    Article  CAS  PubMed  Google Scholar 

  195. Wang, X., Wang, J. & Jiang, X. MdmX protein is essential for Mdm2 protein-mediated p53 polyubiquitination. J. Biol. Chem. 286, 23725–23734 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Linares, L. K., Hengstermann, A., Ciechanover, A., Muller, S. & Scheffner, M. HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53. Proc. Natl Acad. Sci. USA 100, 12009–12014 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Dehan, E. et al. βTrCP- and Rsk1/2-mediated degradation of BimEL inhibits apoptosis. Mol. Cell 33, 109–116 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Dorrello, N. V. et al. S6K1- and βTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 314, 467–471 (2006).

    Article  CAS  PubMed  Google Scholar 

  199. Duan, S. et al. mTOR generates an auto-amplification loop by triggering the βTrCP- and CK1α-dependent degradation of DEPTOR. Mol. Cell 44, 317–324 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Sivakumar, S. & Gorbsky, G. J. Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nat. Rev. Mol. Cell Biol. 16, 82–94 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Kudo, Y. et al. Role of F-box protein βTrcp1 in mammary gland development and tumorigenesis. Mol. Cell. Biol. 24, 8184–8194 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Belaidouni, N. et al. Overexpression of human βTrCP1 deleted of its F box induces tumorigenesis in transgenic mice. Oncogene 24, 2271–2276 (2005).

    Article  CAS  PubMed  Google Scholar 

  203. Shakya, R. et al. The basal-like mammary carcinomas induced by Brca1 or Bard1 inactivation implicate the BRCA1/BARD1 heterodimer in tumor suppression. Proc. Natl Acad. Sci. USA 105, 7040–7045 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Xu, X. et al. Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat. Genet. 22, 37–43 (1999).

    Article  CAS  PubMed  Google Scholar 

  205. Brodie, S. G. et al. Multiple genetic changes are associated with mammary tumorigenesis in Brca1 conditional knockout mice. Oncogene 20, 7514–7523 (2001).

    Article  CAS  PubMed  Google Scholar 

  206. Sancho, R. et al. F-Box and WD repeat domain-containing 7 regulates intestinal cell lineage commitment and is a haploinsufficient tumor suppressor. Gastroenterology 139, 929–941 (2010).

    Article  CAS  PubMed  Google Scholar 

  207. Babaei-Jadidi, R. et al. FBXW7 influences murine intestinal homeostasis and cancer, targeting Notch, Jun, and DEK for degradation. J. Exp. Med. 208, 295–312 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Jones, S. N., Hancock, A. R., Vogel, H., Donehower, L. A. & Bradley, A. Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. Proc. Natl Acad. Sci. USA 95, 15608–15612 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Fujiwara, M. et al. Parkin as a tumor suppressor gene for hepatocellular carcinoma. Oncogene 27, 6002–6011 (2008).

    Article  CAS  PubMed  Google Scholar 

  210. Zhang, C. et al. Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. Proc. Natl Acad. Sci. USA 108, 16259–16264 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Sistrunk, C. et al. Skp2 deficiency inhibits chemical skin tumorigenesis independent of p27Kip1 accumulation. Am. J. Pathol. 182, 1854–1864 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors are supported by US National Cancer Institute (NCI) grants CA207118 (to J.Q.) and CA128814 and CA111515 (to Z.A.R.), by the US Office of the Assistant Secretary of Defense for Health Affairs through the Prostate Cancer Research Program Award W81XWH-14-1-0551 (to Z.A.R.) and by a V Foundation Scholar Award V2016-026 (to J.Q.). The opinions, interpretations, conclusions and recommendations stated here are those of the authors and are not necessarily endorsed by the US Department of Defense.

Author information

Authors and Affiliations

Authors

Contributions

D.S. and J.Q. researched the data for the article. Z.A.R. provided a substantial contribution to discussions of the content. D.S. and Z.A.R. contributed equally to writing the article and to reviewing and/or editing the manuscript before submission.

Corresponding author

Correspondence to Ze'ev A. Ronai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Examples of deregulated E3 ubiquitin ligases in cancer (DOC 1585 kb)

PowerPoint slides

Glossary

Ubiquitylation

An enzymatic reaction that leads to the attachment of ubiquitin moieties either to ubiquitin itself (creating polyubiquitin chains) or to other proteins via isopeptide linkages.

Ubiquitin-activating enzymes

(E1s). Enzymes that activate ubiquitin in an ATP-dependent manner.

Ubiquitin-conjugating enzymes

(E2s). Enzymes that first accept activated ubiquitin from a ubiquitin-activating enzyme (E1) and then transfer it to substrates.

Ubiquitin ligases

(E3s). Enzymes that facilitate substrate recognition and guide the transfer of activated ubiquitin from the ubiquitin-conjugating enzyme (E2) to specific substrates.

Mitophagy

The selective autophagic clearance of damaged mitochondria.

Cyclins

A family of regulatory proteins that show oscillating expression throughout the cell cycle and that are required for the activation of cyclin-dependent kinases.

Cyclin-dependent kinase

(CDK). A type of protein that belongs to a group of serine and threonine kinases that require cyclins for activation and regulate cell cycle progression.

Haploinsufficient

A state in which one copy of a gene is inactivated or deleted and the remaining functional copy is not sufficient to preserve normal function.

Replication origins

Sites in the DNA where the replication machinery is loaded at the onset of DNA synthesis.

Spindle assembly checkpoint

(SAC). A stage in the cell cycle that is activated during mitosis and meiosis to delay cell division until all chromosomes are correctly attached to the spindle.

Phosphodegron

One or multiple phosphorylated residues in a protein substrate that are necessary for recognition by some ubiquitin ligases.

Destruction box

(D-box). A conserved sequence of amino acids (RxxL) in proteins that is recognized by the APC/C (anaphase-promoting complex; also known as the cyclosome).

Micronuclei

Extranuclear bodies that form if chromosome fragments or entire chromosomes are not incorporated into the nucleus following cell division.

Non-homologous end joining

(NHEJ). An error-prone mechanism to repair DNA double strand breaks whereby the broken ends can be ligated, even with little or no sequence complementarity.

Base excision repair

(BER). A DNA repair mechanism that replaces bases that are damaged as a result of oxidation, deamination or alkylation.

Deubiquitylating enzyme

(DUB). A protease (cysteine protease or metalloproteinase) that cleaves the isopeptide linkage between the protein substrate (which can be ubiquitin itself) and the ubiquitin residue.

Hypoxic tension

The level of oxygen (usually measured as a percentage) in a given tissue or microenvironment. The lower the level of oxygen, the higher the tension.

Unfolded protein response

(UPR). A well-defined process that plays a critical role in restoring homeostasis following accumulation of potentially toxic misfolded proteins in the endoplasmic reticulum.

Succination

A process wherein fumarate reacts with cysteine residues in proteins by a Michael addition reaction to form S-(2-succinyl) cysteine.

Mitochondrial depolarization

The change in the resting potential (negative membrane potential) of mitochondria in the depolarizing direction (positive membrane potential), which is a critical step in the induction of mitochondrial apoptosis.

Degrons

Specific sequences of amino acids in a substrate that are necessary for recognition by the ubiquitin ligase.

Linear ubiquitin chain assembly complex

(LUBAC). An atypical ubiquitin ligase complex that consists of haeme-oxidized IRP2 ubiquitin ligase 1 (HOIL1; also known as RBCK1), HOIL1-interacting protein (HOIP; also known as RNF31) and the non-catalytic subunit shank-associated RH domain-interacting protein (SHARPIN). The LUBAC mediates M1-linked polyubiquitylation of its substrates and regulates, among other processes, nuclear factor-κB (NF-κB) and MAPK activation downstream of tumour necrosis factor receptor (TNFR) signalling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senft, D., Qi, J. & Ronai, Z. Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat Rev Cancer 18, 69–88 (2018). https://doi.org/10.1038/nrc.2017.105

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2017.105

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer