Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Laser-driven amplification of soft X-rays by parametric stimulated emission in neutral gases

Abstract

We present a new method for parametric amplification of soft-X-ray radiation. The laser-driven amplifier is based on parametric stimulated emission and is seeded with high-order-harmonic radiation generated in the same medium. The exponential increase of the soft-X-ray yield with increasing atomic density is experimentally demonstrated for two different sets of laser parameters. A small-signal gain up to 8×103 is obtained in both experiments at about 40 eV in argon using 350-fs-long laser pulses and with 6-fs-long ones at about 260 eV in helium, respectively. This new scheme reduces the pumping threshold for lasing with a comparable conversion efficiency into the millijoule level, which is about two orders of magnitude smaller compared with the conventional plasma X-ray lasers. With a simple model, we can estimate the necessary experimental conditions for identifying the spectral range and the magnitude of the maximum gain, which are in reasonable agreement with our measurements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Parametric X-ray amplification.
Figure 2: XPA in argon.
Figure 3: Conversion efficiency and spectral narrowing for XPA in argon as a function of the driving laser intensity.
Figure 4: One and two-stage XPA in He.

Similar content being viewed by others

References

  1. Ewald, G. et al. Nuclear charge radii of 8,9Li determined by laser spectroscopy. Phys. Rev. Lett. 93, 113002 (2004).

    Article  ADS  Google Scholar 

  2. Sanchez, R. et al. Nuclear charge radii of 9,11Li: The influence of halo neutrons. Phys. Rev. Lett. 96, 033002 (2006).

    Article  ADS  Google Scholar 

  3. Seres, E. & Spielmann, C. Ultrafast soft X-ray absorption spectroscopy with sub-20-fs resolution. Appl. Phys. Lett. 91, 121919 (2007).

    Article  ADS  Google Scholar 

  4. Seres, E. & Spielmann, C. Time-resolved optical pump X-ray absorption probe spectroscopy in the range up to 1 keV with 20 fs resolution. J. Mod. Opt. 55, 2643–2651 (2008).

    Article  ADS  Google Scholar 

  5. Gumberidze, A. et al. X-ray spectroscopy of highly-charged heavy ions at FAIR. NIM B 267, 248–250 (2009).

    Article  ADS  Google Scholar 

  6. Rus, B. et al. Multimillijoule, highly coherent X-ray laser at 21 nm operating in deep saturation through double-pass amplification. Phys. Rev. A 66, 063806 (2002).

    Article  ADS  Google Scholar 

  7. Zeitoun, Ph. et al. A high-intensity highly coherent soft X-ray femtosecond laser seeded by a high harmonic beam. Nature 431, 426–429 (2004).

    Article  ADS  Google Scholar 

  8. Wang, Y. et al. Phase-coherent, injection-seeded, table-top soft-X-ray lasers at 18.9 nm and 13.9 nm. Nature Photon. 2, 94–98 (2008).

    Article  ADS  Google Scholar 

  9. Hasegawa, N. et al. Frequency filter of seed X-ray by use of X-ray laser medium: Toward the generation of the temporally coherent X-ray laser. Jpn. J. Appl. Phys. 48, 012503 (2009).

    Article  ADS  Google Scholar 

  10. Matthews, D. et al. X-ray laser research at the Lawrence Livermore National Laboratory Nova laser facility. J. Opt. Soc. Am. B 4, 575–587 (1987).

    Article  ADS  Google Scholar 

  11. Kato, Y. et al. Observation of gain at 54.2 Å on Balmer–alpha transition of hydrogenic sodium. Appl. Phys. B 50, 247–256 (1990).

    Article  ADS  Google Scholar 

  12. Dunn, J. et al. Gain saturation regime for laser-driven tabletop, transient Ni-like ion X-ray lasers. Phys. Rev. Lett. 84, 4834–4837 (2000).

    Article  ADS  Google Scholar 

  13. Kapteyn, H. C., Lee, R. W. & Falcone, R. W. Observation of a short-wavelength laser pumped by auger decay. Phys. Rev. Lett. 57, 2939–2942 (1986).

    Article  ADS  Google Scholar 

  14. Präg, A. R., Glinz, A., Balmer, J. E., Li, Y. & Fill, E. E. Prepulse dependence of J=0−1 lasing at 32.6 nm in neon-like titanium. Appl. Phys. B 63, 113–116 (1996).

    Article  ADS  Google Scholar 

  15. Nagata, Y. et al. Soft-X-ray amplification of the Lyman-α transition by optical-field-induced ionization. Phys. Rev. Lett. 71, 3774–3777 (1993).

    Article  ADS  Google Scholar 

  16. Zimmer, D. et al. An improved double-pulse non-normal incidence pumping geometry for transient collisionally excited soft X-ray lasers. Opt. Express 16, 10398–10403 (2008).

    Article  ADS  Google Scholar 

  17. Heinbuch, S., Grisham, M., Martz, D. & Rocca, J. J. Demonstration of a desk-top size high repetition rate soft X-ray laser. Opt. Express 13, 4050–4055 (2005).

    Article  ADS  Google Scholar 

  18. Hudis, E., Shkolnikov, P. L. & Kaplan, A. E. X-ray stimulated Raman scattering in Li and He. Appl. Phys. Lett. 64, 818–820 (1994).

    Article  ADS  Google Scholar 

  19. Fill, E. E., van Enk, S. J., Zhang, J. & Lambropoulos, P. Stimulated Raman scattering in helium with soft-X-ray laser radiation. Phys. Rev. A 54, 5374–5377 (1996).

    Article  ADS  Google Scholar 

  20. Meyer, S., Chichkov, B. N. & Wellegehausen, B. High-order parametric amplifiers. J. Opt. Soc. Am. B 16, 1587–1591 (1999).

    Article  ADS  Google Scholar 

  21. Winterfeldt, C., Spielmann, C. & Gerber, G. Control of high harmonic generation. Rev. Mod. Phys. 80, 117–140 (2008).

    Article  ADS  Google Scholar 

  22. Elouga Bom, L. B., Ganeev, R. A., Abdul-Hadi, J., Vidal, F. & Ozaki, T. Intense multimicrojoule high-order harmonics generated from neutral atoms of In2O3 nanoparticles. Appl. Phys. Lett. 94, 111108 (2009).

    Article  ADS  Google Scholar 

  23. Seres, J. et al. Source of coherent kiloelectronvolt X-rays. Nature 433, 596 (2005).

    Article  ADS  Google Scholar 

  24. Seres, E., Seres, J. & Spielmann, C. X-ray absorption spectroscopy in the keV range with laser generated high harmonic radiation. Appl. Phys. Lett. 89, 181919 (2006).

    Article  ADS  Google Scholar 

  25. Takahashi, E. J., Kanai, T., Ishikawa, K. L., Nabekawa, Y. & Midorikawa, K. Dramatic enhancement of high-order harmonic generation. Phys. Rev. Lett. 99, 053904 (2007).

    Article  ADS  Google Scholar 

  26. Ravasio, A. et al. Single-shot diffractive imaging with a table-top femtosecond soft X-ray laser-harmonics source. Phys. Rev. Lett. 103, 028104 (2009).

    Article  ADS  Google Scholar 

  27. Hergott, J-F. et al. Extreme-ultraviolet high-order harmonic pulses in the microjoule range. Phys. Rev. A 66, 021801(R) (2002).

    Article  ADS  Google Scholar 

  28. Zhang, X. et al. Quasi-phase-matching and quantum-path control of high-harmonic generation using counterpropagating light. Nature Phys. 3, 270–275 (2007).

    Article  ADS  Google Scholar 

  29. Seres, J. et al. Coherent superposition of laser-driven soft-X-ray harmonics from successive sources. Nature Phys. 3, 878–883 (2007).

    Article  ADS  Google Scholar 

  30. Zepf, M., Dromey, B., Landreman, M., Foster, P. & Hooker, S. M. Bright quasi-phase-matched soft-X-ray harmonic radiation from argon ions. Phys. Rev. Lett. 99, 143901 (2007).

    Article  ADS  Google Scholar 

  31. Kim, I. J. et al. Generation of submicrojoule high harmonics using a long gas jet in a two-colour laser field. Appl. Phys. Lett. 92, 021125 (2008).

    Article  ADS  Google Scholar 

  32. Nomura, Y. et al. Attosecond phase locking of harmonics emitted from laser-produced plasmas. Nature Phys. 5, 124–128 (2009).

    Article  ADS  Google Scholar 

  33. Balcou, P. et al. High-order-harmonic generation: Towards laser-induced phase-matching control and relativistic effects. Appl. Phys. B 74, 509–515 (2002).

    Article  ADS  Google Scholar 

  34. Hopf, F. A., Meystre, P., Scully, M. O. & Louisell, W. H. Classical theory of a free-electron laser. Opt. Commun. 18, 413–416 (1976).

    Article  ADS  Google Scholar 

  35. Lewenstein, M., Balcou, Ph., Ivanov, M. Yu., L’Huillier, A. & Corcum, P. B. Theory of high-harmonic generation by low-frequency laser field. Phys. Rev. A 49, 2117–2132 (1994).

    Article  ADS  Google Scholar 

  36. Brabec, T. & Krausz, F. Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000).

    Article  ADS  Google Scholar 

  37. Gaarde, M. B., Schafer, K. J., Heinrich, A., Biegert, J. & Keller, U. Large enhancement of macroscopic yield in attosecond pulse train-assisted harmonic generation. Phys. Rev. A 72, 013411 (2005).

    Article  ADS  Google Scholar 

  38. Parker, J. S., Armstrong, G. S. J., Boca, M. & Taylor, K. T. From the UV to the static-field limit: Rates and scaling laws of intense-field ionization of helium. J. Phys. B 42, 134011 (2009).

    Article  ADS  Google Scholar 

  39. Misoguti, L., Christov, I. P., Backus, S., Murnane, M. M. & Kapteyn, H. C. Nonlinear wave-mixing processes in the extreme ultraviolet. Phys. Rev. A 72, 063803 (2005).

    Article  ADS  Google Scholar 

  40. Bauer, D. & Mulser, P. Exact field ionization rates in the barrier-suppression regime from numerical time-dependent Schrodinger-equation calculations. Phys. Rev. A 59, 569–577 (1999).

    Article  ADS  Google Scholar 

  41. Kuehl, T. et al. Optimization of the non-normal incidence, transient pumped plasma X-ray laser for laser spectroscopy and plasma diagnostics at the facility for antiproton and ion research (FAIR). Laser Particle Beams 25, 93–97 (2007).

    Article  Google Scholar 

  42. Marowsky, G. Gain-narrowing studies with an organic dye laser. J. Appl. Phys. 45, 2621–2623 (1974).

    Article  ADS  Google Scholar 

  43. Seres, J. et al. Sub-10-fs, terawatt-scale Ti:sapphire laser system. Opt. Lett. 28, 1832–1834 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study has been sponsored by the Austrian Science Fund (grants No. F016 P03), the DFG grant TR18 P10, SE 1911/1-1, and TKM grants B154-09030 and B 715-08008. E.S. acknowledges support from the FSU grant ‘ProChance 2009 A1’. The authors acknowledge access to the laser system provided by the Institute of Photonics, Vienna University of Technology and the PHELIX laser team at GSI Darmstadt.

Author information

Authors and Affiliations

Authors

Contributions

J.S., T.K. and C.S. designed the experiments and wrote the manuscript; J.S. and E.S. carried out the soft-X-ray experiments in Vienna; J.S., D.H., B.E., D.Z. and V.B. carried out the XUV experiments in Darmstadt; J.S. supported the theory. All authors analysed the data and contributed to the completion of the manuscript.

Corresponding author

Correspondence to C. Spielmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 847 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seres, J., Seres, E., Hochhaus, D. et al. Laser-driven amplification of soft X-rays by parametric stimulated emission in neutral gases. Nature Phys 6, 455–461 (2010). https://doi.org/10.1038/nphys1638

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1638

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing