Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Terawatt-scale attosecond X-ray pulses from a cascaded superradiant free-electron laser

Abstract

Intense attosecond X-ray pulses are key for ultrafast nonlinear spectroscopy and diffractive imaging. Here we demonstrate the generation of terawatt-scale isolated attosecond pulses with a two-stage cascaded X-ray free-electron laser. These pulses have a median energy in excess of 100 μJ in the soft X-ray region. The temporal profile is characterized with an angular streaking measurement, revealing a maximum peak power of 1.1 TW. Our data show an increase in the average peak power of attosecond X-ray pulses by one order of magnitude over previous reported results and provide strong evidence of soliton-like superradiant behaviour in the X-ray regime.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cascaded amplification experiment.
Fig. 2: Spectral measurements.
Fig. 3: Time-domain measurements.
Fig. 4: Numerical simulations.

Similar content being viewed by others

Data availability

A subset of the raw data used to produce Figs. 14 is publicly available via figshare at https://figshare.com/projects/Terawatt-scale_Attosecond_X-ray_Pulses_from_a_Cascaded_Superradiant_Free-electron_Laser/193178 (ref. 49). This repository also contains a copy of the analysis script used to reconstruct the attosecond pulses from the streaking data. All other data that support the plots within this paper and other findings of this study are available from the corresponding authors on reasonable request.

References

  1. Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 55, 447–449 (1985).

    Article  ADS  Google Scholar 

  2. Spence, D. E., Kean, P. N. & Sibbett, W. 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett. 16, 42–44 (1991).

    Article  ADS  Google Scholar 

  3. Sarukura, N., Ishida, Y. & Nakano, H. Generation of 50-fsec pulses from a pulse-compressed, CW, passively mode-locked Ti:sapphire laser. Opt. Lett. 16, 153–155 (1991).

    Article  ADS  Google Scholar 

  4. Agostini, P., Fabre, F., Mainfray, G., Petite, G. & Rahman, N. K. Free-free transitions following six-photon ionization of xenon atoms. Phys. Rev. Lett. 42, 1127–1130 (1979).

    Article  ADS  Google Scholar 

  5. Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B: At. Mol. Opt. Phys. 21, L31 (1988).

    Article  Google Scholar 

  6. Lewenstein, M., Balcou, P., Ivanov, M. Y., L’huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117 (1994).

    Article  ADS  Google Scholar 

  7. Corkum, P. á & Krausz, F. Attosecond science. Nat. Phys. 3, 381–387 (2007).

    Article  Google Scholar 

  8. Esarey, E., Schroeder, C. B. & Leemans, W. P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009).

    Article  ADS  Google Scholar 

  9. Geddes, C. et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004).

    Article  ADS  Google Scholar 

  10. Emma, P. et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photon. 4, 641–647 (2010).

    Article  ADS  Google Scholar 

  11. Bostedt, C. et al. Linac Coherent Light Source: the first five years. Rev. Mod. Phys. 88, 015007 (2016).

    Article  ADS  Google Scholar 

  12. March, A., Pratt, S., Southworth, S. & DiMauro, L. et al. Femtosecond electronic response of atoms to ultra-intense X-rays. Nature 466, 56–61 (2010).

    Article  ADS  Google Scholar 

  13. O’Neal, J. T. et al. Electronic population transfer via impulsive stimulated X-ray Raman scattering with attosecond soft-X-ray pulses. Phys. Rev. Lett. 125, 073203 (2020).

    Article  ADS  Google Scholar 

  14. Eichmann, U. et al. Photon-recoil imaging: expanding the view of nonlinear X-ray physics. Science 369, 1630–1633 (2020).

    Article  ADS  Google Scholar 

  15. Seibert, M. M. et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470, 78–81 (2011).

    Article  ADS  Google Scholar 

  16. Sobolev, E. et al. Megahertz single-particle imaging at the European XFEL. Commun. Phys. 3, 97 (2020).

    Article  Google Scholar 

  17. Duris, J. et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nat. Photon. 14, 30–36 (2020).

    Article  Google Scholar 

  18. Maroju, P. K. et al. Attosecond pulse shaping using a seeded free-electron laser. Nature 578, 386–391 (2020).

    Article  ADS  Google Scholar 

  19. Li, S. et al. Attosecond coherent electron motion in Auger-Meitner decay. Science 375, 285–290 (2022).

    Article  ADS  Google Scholar 

  20. Cryan, J. P. et al. The development of attosecond XFELs for understanding ultrafast electron motion. Adv. At. Mol. Opt. Phys. 71, 1–64 (2022).

  21. Pellegrini, C., Marinelli, A. & Reiche, S. The physics of X-ray free-electron lasers. Rev. Mod. Phys. 88, 015006 (2016).

    Article  ADS  Google Scholar 

  22. Guetg, M. W. et al. Generation of high-power high-intensity short X-ray free-electron-laser pulses. Phys. Rev. Lett. 120, 014801 (2018).

    Article  ADS  Google Scholar 

  23. Lutman, A. A. et al. High-power femtosecond soft X rays from fresh-slice multistage free-electron lasers. Phys. Rev. Lett. 120, 264801 (2018).

    Article  ADS  Google Scholar 

  24. Zholents, A. A. Method of an enhanced self-amplified spontaneous emission for X-ray free electron lasers. Phys. Rev. ST Accel. Beams 8, 040701 (2005).

    Article  ADS  Google Scholar 

  25. Zhang, Z. et al. Experimental demonstration of enhanced self-amplified spontaneous emission by photocathode temporal shaping and self-compression in a magnetic wiggler. New J. Phys. 22, 083030 (2020).

  26. Duris, J. P. et al. Controllable X-ray pulse trains from enhanced self-amplified spontaneous emission. Phys. Rev. Lett. 126, 104802 (2021).

    Article  ADS  Google Scholar 

  27. MacArthur, J. P. et al. Phase-stable self-modulation of an electron beam in a magnetic wiggler. Phys. Rev. Lett. 123, 214801 (2019).

    Article  ADS  Google Scholar 

  28. Tiedtke, K. et al. Absolute pulse energy measurements of soft X-rays at the Linac Coherent Light Source. Opt. Express 22, 21214–21226 (2014).

    Article  ADS  Google Scholar 

  29. Heimann, P. et al. Laser power meters as an X-ray power diagnostic for LCLS-II. J. Synchrotron Rad. 25, 72–76 (2018).

    Article  Google Scholar 

  30. Larsen, K. A. et al. Compact single-shot soft X-ray photon spectrometer for free-electron laser diagnostics. Opt. Express 31, 35822–35834 (2023).

    Article  ADS  Google Scholar 

  31. Hartmann, N. et al. Attosecond time–energy structure of X-ray free-electron laser pulses. Nat. Photon. 12, 215–220 (2018).

    Article  ADS  Google Scholar 

  32. Champenois, E. et al. A co-axial velocity map imaging spectrometer for electrons. AIP Adv. 8, 115308 (2018).

    Article  ADS  Google Scholar 

  33. Bonifacio, R., Piovella, N. & McNeil, B. W. J. Superradiant evolution of radiation pulses in a free-electron laser. Phys. Rev. A 44, R3441–R3444 (1991).

    Article  ADS  Google Scholar 

  34. Giannessi, L. et al. Superradiant cascade in a seeded free-electron laser. Phys. Rev. Lett. 110, 044801 (2013).

    Article  ADS  Google Scholar 

  35. Gover, A. et al. Superradiant and stimulated-superradiant emission of bunched electron beams. Rev. Mod. Phys. 91, 035003 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  36. Watanabe, T. et al. Experimental characterization of superradiance in a single-pass high-gain laser-seeded free-electron laser amplifier. Phys. Rev. Lett. 98, 034802 (2007).

    Article  ADS  Google Scholar 

  37. Mirian, N. S. et al. Generation and measurement of intense few-femtosecond superradiant extreme-ultraviolet free-electron laser pulses. Nat. Photon. 15, 523–529 (2021).

    Article  ADS  Google Scholar 

  38. Reiche, S. GENESIS 1.3: a fully 3D time-dependent FEL simulation code. Nucl. Instrum. Methods Phys. Res., Sect. A 429, 243–248 (1999).

    Article  ADS  Google Scholar 

  39. Yang, X., Mirian, N. & Giannessi, L. Postsaturation dynamics and superluminal propagation of a superradiant spike in a free-electron laser amplifier. Phys. Rev. Accel. Beams 23, 010703 (2020).

    Article  ADS  Google Scholar 

  40. Zen, H., Hajima, R. & Ohgaki, H. Full characterization of superradiant pulses generated from a free-electron laser oscillator. Sci. Rep. 13, 6350 (2023).

    Article  ADS  Google Scholar 

  41. Decking, W. et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photon. 14, 391–397 (2020).

    Article  ADS  Google Scholar 

  42. Emma, P. et al. Linear accelerator design for the LCLS-II FEL facility. In Proc. 36th International Free Electron Laser Conference THP025 (2014).

  43. Hemsing, E., Halavanau, A. & Zhang, Z. Enhanced self-seeding with ultrashort electron beams. Phys. Rev. Lett. 125, 044801 (2020).

    Article  ADS  Google Scholar 

  44. Li, K. et al. Ghost-imaging-enhanced noninvasive spectral characterization of stochastic X-ray free-electron-laser pulses. Commun. Phys. 5, 191 (2022).

    Article  Google Scholar 

  45. Giannessi, L. & Musumeci, P. The free-electron laser harmonic cascade. New J. Phys. 8, 294 (2006).

    Article  ADS  Google Scholar 

  46. Saldin, E. L., Schneidmiller, E. A. & Yurkov, M. V. Self-amplified spontaneous emission FEL with energy-chirped electron beam and its application for generation of attosecond X-ray pulses. Phys. Rev. ST Accel. Beams 9, 050702 (2006).

    Article  ADS  Google Scholar 

  47. Ratner, D. et al. Experimental demonstration of a soft X-ray self-seeded free-electron laser. Phys. Rev. Lett. 114, 054801 (2015).

    Article  ADS  Google Scholar 

  48. Li, S. et al. Characterizing isolated attosecond pulses with angular streaking. Opt. Express 26, 4531–4547 (2018).

  49. Franz, P. Terawatt-scale attosecond x-ray pulses from a cascaded superradiant free-electron laser. figshare https://figshare.com/projects/Terawatt-scale_Attosecond_X-ray_Pulses_from_a_Cascaded_Superradiant_Free-electron_Laser/193178 (2024).

Download references

Acknowledgements

Use of the LCLS, SLAC National Accelerator Laboratory, is supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-76SF00515. A.M., D.C., P.F. and Z.G. acknowledge support from the Accelerator and Detector Research Program of the Department of Energy, Basic Energy Sciences (BES) division. Z.G., R.R.R. and P.F. also acknowledge support from the Robert Siemann Fellowship of Stanford University. Effort of T.D., J.W., M.F.K. and J.P.C. is supported by the DOE, BES, Chemical Sciences, Geosciences, and Biosciences Division (CSGB). A.M. would like to acknowledge L. Giannessi and T. Gorkhover for useful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

P.F., S.L., Z.G., T.D., J.P.D., J.P.C. and A.M. conceived the experiment. P.F., R.R.R., D.C., Z.G., J.P.D., N.S., Z.Z. and A.M. set up the attosecond XFEL configuration. P.F., S.L., T.D., Z.G., J.W., E.I., K.L., J.M.G., X.C., M.C.H., X.L., M.-F.L., A.K., R.O., A.S., E.T., M.F.K., J.P.C. and A.M. conducted the angular streaking measurements to determine the pulse durations. P.F., S.L., T.D., R.R.R., E.I., Z.G., J.W., J.P.C. and A.M. performed the data analysis. R.R.R., Z.G., Z.Z. and D.C. conducted the numerical simulations of the FEL. All authors were involved in the writing of the manuscript.

Corresponding authors

Correspondence to James P. Cryan or Agostino Marinelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Nina Rohringer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Electron beam parameters
Extended Data Table 2 Laser parameters

Supplementary information

Supplementary Information

Supplementary Sections I–IV, Figs. 1–10, Table 1 and discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franz, P., Li, S., Driver, T. et al. Terawatt-scale attosecond X-ray pulses from a cascaded superradiant free-electron laser. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01427-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-024-01427-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing