News & Views

Filter By:

  • When photons impinge on a material, free electrons can be created by the photoelectric effect. The emitted electron current usually fluctuates with Poisson statistics, but if squeezed quantum light is applied, the electrons bunch up.

    • Alfred Leitenstorfer
    • Peter Baum
    News & Views
  • Questioning the validity of axioms can teach us about physics beyond the standard model. A recent search for the violation of charge conservation and the Pauli exclusion principle yields limits on these scenarios.

    • Alessio Porcelli
    News & Views
  • The shape and trajectory of a crack plays a crucial role in material fracture. High-precision experiments now directly capture this phenomenon, unveiling the intricate 3D nature of cracks.

    • Michael D. Bartlett
    News & Views
  • Even by shining classical light on a single opening, one can perform a double-slit experiment and discover a surprising variety of quantum mechanical multi-photon correlations — thanks to surface plasmon polaritons and photon-number-resolving detectors.

    • Martijn Wubs
    News & Views
  • Stable regions in four-dimensional phase space have been observed by following the motion of accelerated proton beams subject to nonlinear forces. This provides insights into the physics of dynamical systems and may lead to improved accelerator designs.

    • Giulio Stancari
    News & Views
  • Excitation of magnons — quanta of spin-waves — in an antiferromagnet can be used for high-speed data processing. The addition and subtraction of two such modes opens up possibilities for magnon-based information transfer in the terahertz spectral region.

    • Brijesh Singh Mehra
    • Dhanvir Singh Rana
    News & Views
  • The Hamiltonian describing a quantum many-body system can be learned using measurements in thermal equilibrium. Now, a learning algorithm applicable to many natural systems has been found that requires exponentially fewer measurements than existing methods.

    • Sitan Chen
    News & Views
  • Electric dipoles are common in insulators, but extremely rare in metals. This situation may be about to change, thanks to flexoelectricity.

    • Gustau Catalan
    News & Views
  • Ageing is a non-linear, irreversible process that defines many properties of glassy materials. Now, it is shown that the so-called material-time formalism can describe ageing in terms of equilibrium-like properties.

    • Beatrice Ruta
    • Daniele Cangialosi
    News & Views
  • Interacting emitters are the fundamental building blocks of quantum optics and quantum information devices. Pairs of organic molecules embedded in a crystal can become permanently strongly interacting when they are pumped with intense laser light.

    • Stuart J. Masson
    News & Views
  • Some quantum acoustic resonators possess a large number of phonon modes at different frequencies. Direct interactions between modes similar to those available for photonic devices have now been demonstrated. This enables manipulation of multimode states.

    • Audrey Bienfait
    News & Views
  • The integration of theory and experiment makes possible tracking the slow evolution of a photodoped Mott insulator to a distinct non-equilibrium metallic phase under the influence of electron-lattice coupling.

    • Denitsa R. Baykusheva
    News & Views
  • Quantum simulators can provide new insights into the complicated dynamics of quantum many-body systems far from equilibrium. A recent experiment reveals that underlying symmetries dictate the nature of universal scaling dynamics.

    • Maximilian Prüfer
    News & Views
  • Some cerium and uranium compounds exhibit unusual transport properties due to localized electron states. Recent experiments demonstrate that quantum interference on frustrated lattices provides an alternative route to this behaviour.

    • William R. Meier
    News & Views