Articles in 2023

Filter By:

  • The Kondo effect — the screening of an impurity spin by conduction electrons — is a fundamental many-body effect. However, recent experiments combined with simulations have caused a long-standing model system for the single-atom Kondo effect to fail.

    • Jörg Kröger
    • Takashi Uchihashi
    News & Views
  • It has been around fifty years since Kenneth Wilson’s work on the renormalization group. Nature Physics celebrates this anniversary with a collection of Comments on its development and applications.

    Editorial
  • The 2023 Nobel Prize in Physics has been awarded to Pierre Agostini, Ferenc Krausz and Anne L’Huillier “for experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter”.

    Editorial
  • Although its measurement was considered an experimental nightmare for decades, the Stefan–Boltzmann constant was assigned an exact value in 2019. Massimiliano Malgieri and Pasquale Onorato explain what this story teaches us.

    • Massimiliano Malgieri
    • Pasquale Onorato
    Measure for Measure
  • Kenneth Wilson worked on the renormalization group during the Cold War, when communication between scientists in the Soviet Union and in the West was restricted. Nevertheless, Soviet physicists had a strong influence on Wilson’s work.

    • P. Chandra
    Comment
  • Historically, most renormalization group studies have been performed for equilibrium systems. Here, I give a personal reflection on the unexpected outcome of studying non-equilibrium flocking using renormalization methods.

    • Yuhai Tu
    Comment
  • Supersymmetric quantum field theories have special properties that make them easier to study. This Comment discusses how the constraints that supersymmetry places on renormalization group flows have been used to study strongly coupled field theories.

    • Jaewon Song
    Comment
  • The renormalization group evolved from ad hoc procedures to cope with divergences in perturbative calculations. This Comment summarizes efforts to develop a mathematically rigorous approach to renormalization group calculations.

    • Antti Kupiainen
    Comment
  • Renormalization began as a tool to eliminate divergences in quantum electrodynamics, but it is now the basis of our understanding of physics at different energy scales. Here, I review its evolution with an eye towards physics beyond the Wilsonian paradigm.

    • Philip W. Phillips
    Comment
  • Interactions between a localized magnetic moment and electrons in a metal can produce an emergent resonance that affects the metal’s properties. A realization of this Kondo effect in MoS2 provides an opportunity to study it in microscopic detail.

    • Camiel van Efferen
    • Jeison Fischer
    • Wouter Jolie
    ArticleOpen Access
  • Permanent deformation in solids results from atoms not aligning with the external stress causing the deformation. Detecting such non-affine atomic rearrangements and connecting them to measurable mechanical effects is now shown to be feasible by means of high-energy X-ray diffraction.

    • Saswati Ganguly
    News & Views
  • Neutron spectroscopy, entanglement analysis, and simulations provide evidence that KYbSe2 closely approximates a 2D quantum spin liquid. Although KYbSe2 displays magnetic ordering at low temperatures, its magnetic dynamics are dominated by fractionalized excitations that exhibit anomalously large quantum entanglement, indicating that on finite timescales KYbSe2 exhibits quantum spin liquid physics.

    Research Briefing
  • Annually, the European Research Council (ERC) and the National Science Foundation (NSF) allocate resources to promote research excellence in Europe and the USA. We observe that European Union (EU)-based researchers rely strongly on United States (US) collaborations to secure top EU funding, while the reverse is much less common.

    • Sandeep Chowdhary
    • Nicolò Defenu
    • Federico Battiston
    Comment