Letters

Filter By:

  • The intensity of optically-pumped fluorescence generated from a single atomic defect in diamond can be reduced by 80% in just 100 ns by applying infrared laser light. This result demonstrates the possibility of using these so-called nitrogen–vacancy centres to create optical switches that operate at room temperature.

    • Michael Geiselmann
    • Renaud Marty
    • Romain Quidant
    Letter
  • Real-world networks are rarely isolated. A model of an interdependent network of networks shows that an abrupt phase transition occurs when interconnections between independent networks are added. This study also suggests ways to minimize the danger of abrupt structural changes to real networks.

    • Filippo Radicchi
    • Alex Arenas
    Letter
  • The Van Allen radiation belts are two rings of charged particles encircling the Earth. Therefore the transient appearance in 2012 of a third ring between the inner and outer belts was a surprise. A study of the ultrarelativistic electrons in this middle ring reveals new physics for particles above 2 MeV.

    • Yuri Y. Shprits
    • Dmitriy Subbotin
    • Kyung-Chan Kim
    Letter
  • A nanomechanical interface between optical photons and microwave electrical signals is now demonstrated. Coherent transfer between microwave and optical fields is achieved by parametric electro-optical coupling in a piezoelectric optomechanical crystal, and this on-chip technology could form the basis of photonic networks of superconducting quantum bits.

    • Joerg Bochmann
    • Amit Vainsencher
    • Andrew N. Cleland
    Letter
  • Measurements of the spin heat accumulation at the ferromagnetic/non-magnetic interface in nanopillar spin valves show that spin-up and spin-down electrons have different temperatures. This observation is important for the design of magnetic thermal switches and the study of inelastic spin scattering.

    • F. K. Dejene
    • J. Flipse
    • B. J. van Wees
    Letter
  • Ensembles of nuclear spins display thermal fluctuations—spin noise—that interfere with nuclear magnetic resonance measurements of samples below a threshold size. Experiments on nanowires show that by monitoring spin noise in real time and applying instantaneously adjusted radiofrequency pulses, spin polarization distributions that are narrower than the thermal distribution can be obtained.

    • P. Peddibhotla
    • F. Xue
    • M. Poggio
    Letter
  • The interaction between light and a relativistic electron beam can be used to generate optical vortices in a free electron laser, providing a way to engineer bright orbital angular momentum light at shorter X-ray wavelengths.

    • Erik Hemsing
    • Andrey Knyazik
    • James B. Rosenzweig
    Letter
  • The fluctuation relations are a central concept in thermodynamics at the microscopic scale. These relations are experimentally verified by measuring the entropy production in a single-electron box coupled to two heat baths.

    • J. V. Koski
    • T. Sagawa
    • J. P. Pekola
    Letter
  • Schrodinger’s cat paradox embodies the open question of whether quantum effects can survive at macroscopic scales. A quantum optics experiment explores this question by creating entanglement between a microscopic and a macroscopic system.

    • A. I. Lvovsky
    • R. Ghobadi
    • C. Simon
    Letter
  • By means of low-temperature scanning tunnelling spectroscopy, a heavy fermion material in its superconducting and mixed states can be imaged. Besides probing the superconducting gap symmetry, the measurements also reveal a pseudogap.

    • Brian B. Zhou
    • Shashank Misra
    • Ali Yazdani
    Letter
  • By pushing scanning tunnelling spectroscopy down to millikelvin temperatures, it is now possible to image a heavy fermion superconductor and measure the superconducting gap symmetry, with gap nodes in unexpected momentum-space locations.

    • M. P. Allan
    • F. Massee
    • J. C. Davis
    Letter
  • Extreme ultraviolet and X-ray imaging of a solar flare with unprecedented clarity now provide visual evidence that magnetic reconnection plays a fundamental role in generating solar flares. The Atmospheric Imaging Assembly on NASA’s Solar Dynamics Observatory is able to observe a ’cold’ plasma moving into the reconnection point and the simultaneous acceleration of a hot-flare-heated plasma away from it.

    • Yang Su
    • Astrid M. Veronig
    • Weiqun Gan
    Letter
  • Buckling is often regarding as a form of mechanical failure to be avoided. High-speed video microscopy and mechanical stability theory now show, however, that bacteria use such processes to their advantage. Cells propelled with a single flagellum change direction with a flick-like motion that exploits a buckling instability.

    • Kwangmin Son
    • Jeffrey S. Guasto
    • Roman Stocker
    Letter