Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum interference in plasmonic circuits

Abstract

Surface plasmon polaritons (plasmons) are a combination of light and a collective oscillation of the free electron plasma at metal/dielectric interfaces1. This interaction allows subwavelength confinement of light beyond the diffraction limit inherent to dielectric structures2. As a result, the intensity of the electromagnetic field is enhanced, with the possibility to increase the strength of the optical interactions between waveguides, light sources3,4,5,6 and detectors7,8. Plasmons maintain non-classical photon statistics9,10 and preserve entanglement upon transmission through thin, patterned metallic films11,12 or weakly confining waveguides13. For quantum applications3,14, it is essential that plasmons behave as indistinguishable quantum particles. Here we report on a quantum interference experiment in a nanoscale plasmonic circuit consisting of an on-chip plasmon beamsplitter with integrated superconducting single-photon detectors15 to allow efficient single plasmon detection16. We demonstrate a quantum-mechanical interaction between pairs of indistinguishable surface plasmons by observing Hong–Ou–Mandel (HOM) interference17, a hallmark non-classical interference effect that is the basis of linear optics-based quantum computation18. Our work shows that it is feasible to shrink quantum optical experiments to the nanoscale and offers a promising route towards subwavelength quantum optical networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HOM interference.
Figure 2: Plasmon interference device and experimental set-up.
Figure 3: Photoresponse maps of a plasmonic beamsplitter.
Figure 4: Quantum interference measurements.

Similar content being viewed by others

References

  1. Barnes, W., Dereux, A. & Ebbesen, T. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  CAS  Google Scholar 

  2. Schuller, J. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    Article  CAS  Google Scholar 

  3. Chang, D. E., Sørensen, A. S., Hemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).

    Article  CAS  Google Scholar 

  4. Oulton, R. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article  CAS  Google Scholar 

  5. Schietinger, S., Barth, M., Aichele, T. & Benson, O. Plasmon-enhanced single photon emission from a nanoassembled metal–diamond hybrid structure at room temperature. Nano Lett. 9, 1694–1698 (2009).

    Article  CAS  Google Scholar 

  6. Curto, A. G. et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010).

    Article  CAS  Google Scholar 

  7. Neutens, P., Van Dorpe, P., De Vlaminck, I., Lagae, L. & Borghs, G. Electrical detection of confined gap plasmons in metal–insulator–metal waveguides. Nature Photon. 3, 283–286 (2009).

    Article  CAS  Google Scholar 

  8. Falk, A. et al. Near-field electrical detection of optical plasmons and single-plasmon sources. Nature Phys. 5, 475–479 (2009).

    Article  CAS  Google Scholar 

  9. Akimov, A. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).

    Article  CAS  Google Scholar 

  10. Kolesov, R. et al. Wave particle duality of single surface plasmon polaritons. Nature Phys. 5, 470–474 (2009).

    Article  CAS  Google Scholar 

  11. Altewischer, E., Van Exter, M. & Woerdman, J. Plasmon-assisted transmission of entangled photons. Nature 418, 304–306 (2002).

    Article  CAS  Google Scholar 

  12. Fasel, S. et al. Energy-time entanglement preservation in plasmon-assisted light transmission. Phys. Rev. Lett. 94, 110501 (2005).

    Article  Google Scholar 

  13. Fujii, G. et al. Preservation of photon indistinguishability after transmission through surface-plasmon–polariton waveguide. Opt. Lett. 37, 1535–1537 (2012).

    Article  Google Scholar 

  14. Chang, D., Sørensen, A., Demler, E. & Lukin, M. A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007).

    Article  CAS  Google Scholar 

  15. Gol'tsman, G. et al. Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705 (2001).

    Article  CAS  Google Scholar 

  16. Heeres, R. W. et al. On-chip single plasmon detection. Nano Lett. 10, 661–664 (2010).

    Article  CAS  Google Scholar 

  17. Hong, C., Ou, Z. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article  CAS  Google Scholar 

  18. Knill, E., Laflamme, R. & Milburn, G. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  CAS  Google Scholar 

  19. Loudon, R. Fermion and boson beamsplitter statistics. Phys. Rev. A 58, 4904–4909 (1998).

    Article  CAS  Google Scholar 

  20. Barnett, S. M., Jeffers, J., Gatti, A. & Loudon, R. Quantum optics of lossy beam splitters. Phys. Rev. A 57, 2134–2145 (1998).

    Article  CAS  Google Scholar 

  21. Yamada, H., Chu, T., Ishida, S. & Arakawa, Y. Optical directional coupler based on Si-wire waveguides. IEEE Photon. Technol. Lett. 17, 585–587 (2005).

    Article  CAS  Google Scholar 

  22. Politi, A., Cryan, M. J., Rarity, J. G., Yu, S. & O'Brien, J. L. Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008).

    Article  CAS  Google Scholar 

  23. Charbonneau, R., Lahoud, N., Mattiussi, G. & Berini, P. Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons. Opt. Express 13, 977–984 (2005).

    Article  Google Scholar 

  24. Bozhevolnyi, S., Volkov, V., Devaux, E., Laluet, J. & Ebbesen, T. Channel plasmon subwavelength waveguide components including interferometers and ring resonators, Nature 440, 508–511 (2006).

    Article  CAS  Google Scholar 

  25. Burnham, D. & Weinberg, D. Observation of simultaneity in parametric production of optical photon pairs. Phys. Rev. Lett. 25, 84–87 (1970).

    Article  CAS  Google Scholar 

  26. Jung, J., Søndergaard, T. & Bozhevolnyi, S. I. Theoretical analysis of square surface plasmon–polariton waveguides for long-range polarization-independent waveguiding. Phys. Rev. B 76, 035434 (2007).

    Article  Google Scholar 

  27. Lusse, P., Stuwe, P., Schule, J. & Unger, H. Analysis of vectorial mode fields in optical waveguides by a new finite difference method. J. Lightwave Technol. 12, 487–494 (1994).

    Article  Google Scholar 

  28. Hadfield, R. Single-photon detectors for optical quantum information applications. Nature Photon. 3, 696–705 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank K. Kuipers and E. Verhagen for discussions, M. Witteveen for help with earlier measurements and R. Zia for discussions and the mode solver code. This work was supported financially by the Netherlands Organisation for Scientific Research (NWO/FOM) and the European Research Council.

Author information

Authors and Affiliations

Authors

Contributions

R.W.H. designed the experiment, fabricated the samples and performed the measurements and analysis. L.P.K. and V.Z. supervised the project. All authors contributed to the manuscript.

Corresponding author

Correspondence to Reinier W. Heeres.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1342 kb)

Supplementary zip

Supplementary zip (ZIP 1755 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heeres, R., Kouwenhoven, L. & Zwiller, V. Quantum interference in plasmonic circuits. Nature Nanotech 8, 719–722 (2013). https://doi.org/10.1038/nnano.2013.150

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.150

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing