Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer

Abstract

Plasmon-enhanced optical trapping is being actively studied to provide efficient manipulation of nanometre-sized objects. However, a long-standing issue with previously proposed solutions is how to controllably load the trap on-demand without relying on Brownian diffusion. Here, we show that the photo-induced heating of a nanoantenna in conjunction with an applied a.c. electric field can initiate rapid microscale fluid motion and particle transport with a velocity exceeding 10 μm s–1, which is over two orders of magnitude faster than previously predicted. Our electrothermoplasmonic device enables on-demand long-range and rapid delivery of single nano-objects to specific plasmonic nanoantennas, where they can be trapped and even locked in place. We also present a physical model that elucidates the role of both heat-induced fluidic motion and plasmonic field enhancement in the plasmon-assisted optical trapping process. Finally, by applying a d.c. field or low-frequency a.c. field (below 10 Hz) while the particle is held in the trap by the gradient force, the trapped nano-objects can be immobilized into plasmonic hotspots, thereby providing the potential for effective low-power nanomanufacturing on-chip.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental facility.
Figure 2: Theoretical analysis of ETP flow.
Figure 3: Particle transport and trapping forces.
Figure 4: Particle trapping and immobilization.

Similar content being viewed by others

References

  1. Quidant, R. & Girard, C. Surface-plasmon-based optical manipulation. Laser Photon. Rev. 2, 47–57 (2008).

    Article  CAS  Google Scholar 

  2. Quidant, R. Plasmonic tweezers—the strength of surface plasmons. MRS Bull. 37, 739–744 (2012).

    Article  CAS  Google Scholar 

  3. Grigorenko, A. N., Roberts, N. W., Dickinson, M. R. & Zhang, Y. Nanometric optical tweezers based on nanostructured substrates. Nature Photon. 2, 365–370 (2008).

    Article  CAS  Google Scholar 

  4. Tanaka, Y., Kaneda, S. & Sasaki, K. Nanostructured potential of optical trapping using a plasmonic nanoblock pair. Nano Lett. 13, 2146–2150 (2013).

    Article  CAS  Google Scholar 

  5. Kang, J.-H. et al. Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas. Nature Commun. 2, 582 (2011).

    Article  Google Scholar 

  6. Juan, M. L., Gordon, R., Pang, Y., Eftekhari, F. & Quidant, R. Self-induced back-action optical trapping of dielectric nanoparticles. Nature Phys. 5, 915–919 (2009).

    Article  CAS  Google Scholar 

  7. Roxworthy, B. J. et al. Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting. Nano Lett. 12, 796–801 (2012).

    Article  CAS  Google Scholar 

  8. Shoji, T. et al. Reversible photoinduced formation and manipulation of a two-dimensional closely packed assembly of polystyrene nanospheres on a metallic nanostructure. J. Phys. Chem. C 117, 2500–2506 (2013).

    Article  CAS  Google Scholar 

  9. Roxworthy, B. J., Bhuiya, A. M., Inavalli, V. V. G. K., Chen, H. & Toussaint, K. C. Multifunctional plasmonic film for recording near-field optical intensity. Nano Lett. 14, 4687–4693 (2014).

    Article  CAS  Google Scholar 

  10. Baffou, G. et al. Photoinduced heating of nanoparticle arrays. ACS Nano 7, 6478–6488 (2013).

    Article  CAS  Google Scholar 

  11. Roxworthy, B. J., Bhuiya, A. M., Vanka, S. P. & Toussaint, K. C. Understanding and controlling plasmon-induced convection. Nature Commun. 5, 3173 (2014).

    Article  Google Scholar 

  12. Ploschner, M. Optical forces near a nanoantenna. J. Nanophoton. 4, 041570 (2010).

    Article  Google Scholar 

  13. Donner, J. S., Baffou, G., McCloskey, D. & Quidant, R. Plasmon-assisted optofluidics. ACS Nano 5, 5457–5462 (2011).

    Article  CAS  Google Scholar 

  14. Wang, K., Schonbrun, E., Steinvurzel, P. & Crozier, K. B. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. Nature Commun. 2, 469 (2011).

    Article  Google Scholar 

  15. Huidobro, P. A. et al. Plasmonic Brownian ratchet. Phys. Rev. B 88, 201401 (2013).

    Article  Google Scholar 

  16. Ndukaife, J. C. et al. Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles. ACS Nano 8, 9035–9043 (2014).

    Article  CAS  Google Scholar 

  17. Hansen, P., Zheng, Y., Ryan, J. & Hesselink, L. Nano-optical conveyor belt, part I: theory. Nano Lett. 14, 2965–2970 (2014).

    Article  CAS  Google Scholar 

  18. Zheng, Y. et al. Nano-optical conveyor belt, Part II: demonstration of handoff between near-field optical traps. Nano Lett. 14, 2971–2976 (2014).

    Article  CAS  Google Scholar 

  19. Juan, M. L., Righini, M. & Quidant, R. Plasmon nano-optical tweezers. Nature Photon. 5, 349–356 (2011).

    Article  CAS  Google Scholar 

  20. Stratton, J. A. in Electromagnetic Theory 14 (McGraw-Hill, 1941).

    Google Scholar 

  21. Melcher, J. R. Electric fields and moving media. IEEE Trans. Educ. 17, 100–110 (1974).

    Article  Google Scholar 

  22. Baffou, G., Girard, C. & Quidant, R. Mapping heat origin in plasmonic structures. Phys. Rev. Lett. 104, 136805 (2010).

    Article  Google Scholar 

  23. Doering, C. R. & Gibbon, J. D. Applied Analysis of the Navier–Stokes Equations (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  24. Ramos, A., Morgan, H., Green, N. G. & Castellanos, A. AC electrokinetics: a review of forces in microelectrode structures. J. Phys. D 31, 2338–2353 (1999).

    Article  Google Scholar 

  25. Lide, D. R. (ed.) in CRC Handbook of Chemistry and Physics, 84th edn, 2003–2004, section 6–13, 990. (CRC Press, 2003).

  26. Santiago, J. G., Wereley, S. T., Meinhart, C. D., Beebe, D. J. & Adrian, R. J. A particle image velocimetry system for microfluidics. Exp. Fluids 25, 316–319 (1998).

    Article  CAS  Google Scholar 

  27. Parthasarathy, M. & Klingenberg, D. Electrorheology: mechanisms and models. Mater. Sci. Eng. R Rep. 17, 57–103 (1996).

    Article  Google Scholar 

  28. Williams, S. J., Kumar, A. & Wereley, S. T. Electrokinetic patterning of colloidal particles with optical landscapes. Lab Chip 8, 1879–1882 (2008).

    Article  CAS  Google Scholar 

  29. Kumar, A., Cierpka, C., Williams, S. J., Kähler, C. J. & Wereley, S. T. 3D3C velocimetry measurements of an electrothermal microvortex using wavefront deformation PTV and a single camera. Microfluid. Nanofluid. 10, 355–365 (2011).

    Article  Google Scholar 

  30. Benson, O. Assembly of hybrid photonic architectures from nanophotonic constituents. Nature 480, 193–199 (2011).

    Article  CAS  Google Scholar 

  31. Schietinger, S., Barth, M., Aichele, T. & Benson, O. Plasmon-enhanced single photon emission from a nanoassembled metal–diamond hybrid structure at room temperature. Nano Lett. 9, 1694–1698 (2009).

    Article  CAS  Google Scholar 

  32. Thuau, D., Koymen, I. & Cheung, R. A microstructure for thermal conductivity measurement of conductive thin films. Microelectron. Eng. 88, 2408–2412 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Science Foundation Materials Research Science and Engineering Centers (grant no. DMR-1120923). J.C.N. acknowledges partial support from Purdue Water Institute. The authors thank M. Ferrera and N. Kinsey for help with preparation of the manuscript and M. Segev for discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.C.N. conceived, designed and performed the experiments and numerical simulations, and wrote the manuscript. A.G.A.N. provided useful discussions on the project, discussed the results and edited the manuscript. A.V.K. provided useful discussions on the numerical simulations and edited the manuscript. V.M.S. contributed to discussion of the results. S.T.W. provided the tools used for micro-PIV analysis, provided useful discussions on the project, discussed the results and edited the manuscript. A.B. supervised the project, discussed the progress and results, and edited the manuscript.

Corresponding author

Correspondence to Alexandra Boltasseva.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 391 kb)

Supplementary information

Supplementary Movie 1 (AVI 28043 kb)

Supplementary Movie 2

Supplementary Movie 2 (MP4 9389 kb)

Supplementary Movie 3

Supplementary Movie 3 (AVI 31746 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ndukaife, J., Kildishev, A., Nnanna, A. et al. Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer. Nature Nanotech 11, 53–59 (2016). https://doi.org/10.1038/nnano.2015.248

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.248

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing