Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A zero-thermal-quenching phosphor

Abstract

Phosphor-converted white light-emitting diodes (pc-WLEDs) are efficient light sources used in lighting, high-tech displays, and electronic devices. One of the most significant challenges of pc-WLEDs is the thermal quenching, in which the phosphor suffers from emission loss with increasing temperature during high-power LED operation. Here, we report a blue-emitting Na3–2xSc2(PO4)3:xEu2+ phosphor (λem = 453 nm) that does not exhibit thermal quenching even up to 200 °C. This phenomenon of zero thermal quenching originates from the ability of the phosphor to compensate the emission losses and therefore sustain the luminescence with increasing temperature. The findings are explained by polymorphic modification and possible energy transfer from electron–hole pairs at the thermally activated defect levels to the Eu2+ 5d-band with increasing temperature. Our results could initiate the exploration of phosphors with zero thermal quenching for high-power LED applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural characterization of new blue-emitting Na3Sc2(PO4)3:Eu2+(NSPO:xEu2+) phosphor.
Figure 2: Optical and zero-TQ property of NSPO:xEu2+ phosphor.
Figure 3: Polymorphism of NSPO:xEu2+ phosphor and its defect formation.
Figure 4: Zero-thermal-quenching process in NSPO:xEu2+ phosphor.
Figure 5: Performance of fabricated pc-LEDs under high flux operating current.

Similar content being viewed by others

References

  1. Reineke, S. Complementary LED technologies. Nat. Mater. 14, 459–462 (2015).

    Article  CAS  Google Scholar 

  2. Pust, P, Schmidt, P. J. & Schnick, W. A revolution in lighting. Nat. Mater. 14, 454–458 (2015).

    Article  CAS  Google Scholar 

  3. Xia, Z. & Liu, R.-S. Tunable blue-green color emission and energy transfer of Ca2Al3O6F:Ce3+, Tb3+ phosphors for near-UV white LEDs. J. Phys. Chem. C 116, 15604–15609 (2012).

    Article  CAS  Google Scholar 

  4. Lin, C. C. & Liu, R.-S. Advances in phosphors for light-emitting diodes. J. Phys. Chem. Lett. 2, 1268–1277 (2011).

    Article  CAS  Google Scholar 

  5. Daicho, H. et al. A novel phosphor for glareless white light-emitting diodes. Nat. Commun. 3, 1132 (2012).

    Article  Google Scholar 

  6. Zhu, H. et al. Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. Nat. Commun. 5, 4312 (2014).

    Article  CAS  Google Scholar 

  7. Muñoz, G. H., de la Cruz, C. L., Muñoz, A. F. & Rubio, J. O. High-temperature luminescence properties of Eu2+-activated alkali halide phosphor materials. J. Mater. Sci. Lett. 7, 1310–1312 (1988).

    Article  Google Scholar 

  8. Blasse, G. & Grabmaier, B. Luminescent Materials (Springer, 1994).

    Book  Google Scholar 

  9. Dorenbos, P. Thermal quenching of Eu2+ 5d–4f luminescence in inorganic compounds. J. Phys. Condens. Matter 17, 8103–8111 (2005).

    Article  CAS  Google Scholar 

  10. Blasse, G. Thermal quenching of characteristic fluorescence. J. Chem. Phys. 51, 3529–3530 (1969).

    Article  CAS  Google Scholar 

  11. Takeda, T., Hirosaki, N., Funahshi, S. & Xie, R.-J. Narrow-band green-emitting phosphor Ba2LiSi7AlN12:Eu2+ with high thermal stability discovered by a single particle diagnosis approach. Chem. Mater. 27, 5892–5898 (2015).

    Article  CAS  Google Scholar 

  12. Xie, R.-J. & Hirosaki, N. Silicon-based oxynitride and nitride phosphors for white LEDs—a review. Sci. Tech. Adv. Mater. 8, 588–600 (2007).

    Article  CAS  Google Scholar 

  13. Chen, L., Lin, C.-C., Yeh, C.-W. & Liu, R.-S. Light converting inorganic phosphors for white light-emitting diodes. Materials 3, 2172–2195 (2010).

    Article  CAS  Google Scholar 

  14. Bachmann, V. et al. Color point tuning for (Sr, Ca, Ba)Si2O2N2:Eu2+ for white light LEDs. Chem. Mater. 21, 316–325 (2009).

    Article  CAS  Google Scholar 

  15. Im, W. B. et al. Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting. Adv. Mater. 23, 2300–2305 (2011).

    Article  CAS  Google Scholar 

  16. Im, W. B. et al. Sr2.975−xBaxCe0.025AlO4F: a highly efficient green-emitting oxyfluoride phosphor for solid state white lighting. Chem. Mater. 22, 2842–2849 (2010).

    Article  CAS  Google Scholar 

  17. Zhuang, J. et al. The improvement of moisture resistance and thermal stability of Ca3SiO4Cl2:Eu2+ phosphor coated with SiO2 . Appl. Surf. Sci. 257, 4350–4353 (2011).

    Article  CAS  Google Scholar 

  18. Lee, H. S. & Yoo, J. W. Yellow phosphors coated with TiO2 for the enhancement of photoluminescence and thermal stability. Appl. Surf. Sci. 257, 8355–8359 (2011).

    Article  CAS  Google Scholar 

  19. Nakanishi, T. & Tanabe, S. Preparation and luminescent properties of Eu2+-activated glass ceramic phosphor precipitated with β-Ca2SiO4 and Ca3Si2O7 . Phys. Status Solidi A 206, 919–922 (2009).

    Article  CAS  Google Scholar 

  20. Bykov, A. B. et al. Superionic conductors Li3M2(PO4)3 (M = Fe, Sc, Cr): Synthesis, structure and electrophysical properties. Solid State Ion. 38, 31–52 (1990).

    Article  CAS  Google Scholar 

  21. de la Rochère, M. et al. NASICON type materials—Na3M2(PO4)3 (M = Sc, Cr, Fe): Na+-Na+ correlations and phase transitions. Solid State Ion. 9–10, 825–828 (1983).

    Article  Google Scholar 

  22. Masui, T., Koyabu, K., Tamura, S. & Imanaka, N. Synthesis of a new NASICON-type blue luminescent material. J. Alloys Compd. 418, 73–76 (2006).

    Article  CAS  Google Scholar 

  23. Saradhi, M., Pralong, V., Varadaraju, U. & Raveau, B. Facile chemical insertion of lithium in Eu0.33Zr2(PO4)3—an elegant approach for tuning the photoluminescence properties. Chem. Mater. 21, 1793–1795 (2009).

    Article  CAS  Google Scholar 

  24. Delbecq, C. J., Marshall, S. A. & Susman, S. Evidence for a structural phase change in the fast-ion conductor Na3Sc2P3O12 . Solid State Ion. 1, 145–149 (1980).

    Article  CAS  Google Scholar 

  25. Mundy, J., Shenoy, G. & Vashishta, P. Fast ion transport in solids: electrodes, and electrolytes Proc. Int. Conf. Fast Ion Transport in Solids, Electrodes, and Electrolytes (Elsevier North Holland, 1979).

    Google Scholar 

  26. Wickleder, M. S. Inorganic lanthanide compounds with complex anions. Chem. Rev. 102, 2011–2088 (2002).

    Article  CAS  Google Scholar 

  27. Sorokin, N. I. Na+-ion conductivity of double phosphate Na3Sc2(PO4)3 in the region of the βγ transition. Phys. Solid State 56, 678–681 (2014).

    Article  CAS  Google Scholar 

  28. Collin, G., Comes, R., Boilot, J. & Colomban, P. Disorder of tetrahedra in Nasicon-type structure—I.: Na3Sc2(PO4)3: structures and ion–ion correlations. J. Phys. Chem. Solids 47, 843–854 (1986).

    Article  CAS  Google Scholar 

  29. Winand, J. M., Rulmont, A. & Tarte, P. Ionic conductivity of the Na1+xMxIIIZr2−x(PO4)3 systems (M = Al, Ga, Cr, Fe, Sc, In, Y, Yb). J. Mater. Sci. 25, 4008–4013 (1990).

    Article  CAS  Google Scholar 

  30. Keen, D. A. Disordering phenomena in superionic conductors. J. Phys. Condens. Matter 14, R819–R857 (2002).

    Article  CAS  Google Scholar 

  31. Mazza, D. Modeling ionic conductivity in nasicon structures. J. Solid State Chem. 156, 154–160 (2001).

    Article  CAS  Google Scholar 

  32. Pan, Z., Lu, Y.-Y. & Liu, F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater. 11, 58–63 (2012).

    Article  CAS  Google Scholar 

  33. Garlick, G. & Gibson, A. The electron trap mechanism of luminescence in sulphide and silicate phosphors. Proc. Phys. Soc. 60, 574–590 (1948).

    Article  CAS  Google Scholar 

  34. Van den Eeckhout, K., Smet, P. F. & Poelman, D. Persistent luminescence in Eu2+-doped compounds: a review. Materials 3, 2536–2566 (2010).

    Article  CAS  Google Scholar 

  35. Larson, A. C. & Von Dreele, R. B. General Structure Analysis System (GSAS) Los Alamos National Laboratory Report LAUR 86–748 (The Regents of the University of California, 1994).

    Google Scholar 

  36. Momma, K. & Izumi, F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653–658 (2008).

    Article  CAS  Google Scholar 

  37. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  38. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  39. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  40. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Strategic Key-Material Development and the Materials and Components Research and Development bodies, funded by the Ministry of Knowledge Economy (Project No. 10044203, MKE, Korea). This work was also financially supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science, ICT & Future Planning (NRF-2014R1A1A1002909 and 2016R1E1A2020571). This research was supported by a Global PhD Fellowship Program through the NRF funded by the Ministry of Education (NRF-2015H1A2A1033990).

Author information

Authors and Affiliations

Authors

Contributions

W.B.I. and Y.H.K. designed the concept and experiments. Y.H.K., B.Y.K. and E.K. performed all the experiments. W.B.I., P.A. and Y.H.K. analysed and contributed to the technical discussions of results, and wrote the manuscript. S.U. performed combined Rietveld refinement of X-ray and neutron powder diffraction results. S.-H.M. and J.-S.L. carried out high-temperature impedance analysis and interpreted the results. D.L. performed the DFT calculations. K.H.K., J.Y.H. and Y.H.K. measured and analysed the high-temperature decay curve results.

Corresponding author

Correspondence to Won Bin Im.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Arunkumar, P., Kim, B. et al. A zero-thermal-quenching phosphor. Nature Mater 16, 543–550 (2017). https://doi.org/10.1038/nmat4843

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4843

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing