Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ligand-directed targeting of genes to the site of disease

Fundamental changes in the understanding of the primary influences that govern specific gene delivery, combined with rational approaches to engineer the gene transfer vectors, are now transforming targeted in vivo gene transfer from concept to reality. Many viral-based vectors have been designed to avoid gene transfer through their native receptors and redirected to a variety of tissue- and tumor-specific receptors. Non-viral vectors have likewise been engineered to avoid nonspecific gene transfer. Future challenges include advancing these vectors into clinical testing, designing improvements to avoid innate and acquired immunity, and elucidating the mechanisms that govern their biodistribution and pharmacokinetics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: One of the ultimate goals of targeted gene transfer is to engineer the vectors so that they can be administered through the circulation.

References

  1. Curiel, D.T. & Douglas, J.T. (eds). Vector Targeting for Therapeutic Gene Delivery, 710 (Wiley-Liss, Hoboken, NJ, 2002).

    Book  Google Scholar 

  2. Bilbao, R. et al. A blood–tumor barrier limits gene transfer to experimental liver cancer: the effect of vasoactive compounds. Gene Ther. 7, 1824–1832 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Shayakhmetov, D.M., Li, Z.Y., Ni, S. & Lieber, A. Targeting of adenovirus vectors to tumor cells does not enable efficient transduction of breast cancer metastases. Cancer Res. 62, 1063–1068 (2002).

    CAS  PubMed  Google Scholar 

  4. Tomko, R.P., Xu, R. & Philipson, L. HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc. Natl. Acad. Sci. USA 94, 3352–3356 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bergelson, J.M. et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275, 1320–1323 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Wickham, T.J., Mathias, P., Cheresh, D.A. & Nemerow, G.R. Integrins αvβ3 and αvβ5 promote adenovirus internalization but not virus attachment. Cell 73, 309–319 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Einfeld, D.A. et al. Reducing the native tropism of adenovirus vectors requires removal of both CAR and integrin interactions. J. Virol. 75, 11284–11291 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thomas, C.E., Edwards, P., Wickham, T.J., Castro, M.G. & Lowenstein, P.R. Adenovirus binding to the coxsackievirus and adenovirus receptor or integrins is not required to elicit brain inflammation but is necessary to transduce specific neural cell types. J. Virol. 76, 3452–3460 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Michael, S.I., Hong, J.S., Curiel, D.T. & Engler, J.A. Addition of a short peptide ligand to the adenovirus fiber protein. Gene Ther. 2, 660–668 (1995).

    CAS  PubMed  Google Scholar 

  10. Wickham, T.J. et al. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. J. Virol. 71, 8221–8229 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Einfeld, D.A., Brough, D.E., Roelvink, P.W., Kovesdi, I. & Wickham, T.J. Construction of a pseudoreceptor that mediates transduction by adenoviruses expressing a ligand in fiber or penton base. J. Virol. 73, 9130–9136 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Vigne, E. et al. RGD inclusion in the hexon monomer provides adenovirus type 5-based vectors with a fiber knob-independent pathway for infection. J. Virol. 73, 5156–5161 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang, Q. et al. Development of novel cell surface CD34-targeted recombinant adenoassociated virus vectors for gene therapy. Hum. Gene Ther. 9, 1929–1937 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Wickham, T.J. Targeting adenovirus. Gene Ther. 7, 110–114 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Bartlett, J.S., Kleinschmidt, J., Boucher, R.C. & Samulski, R.J. Targeted adeno-associated virus vector transduction of nonpermissive cells mediated by a bispecific F(ab′γ)2 antibody. Nature Biotechnol. 17, 181–186 (1999).

    Article  CAS  Google Scholar 

  16. Boerger, A.L., Snitkovsky, S. & Young, J.A. Retroviral vectors preloaded with a viral receptor–ligand bridge protein are targeted to specific cell types. Proc. Natl. Acad. Sci. USA 96, 9867–9872 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Snitkovsky, S., Niederman, T.M., Carter, B.S., Mulligan, R.C. & Young, J.A. A TVA-single-chain antibody fusion protein mediates specific targeting of a subgroup A avian leukosis virus vector to cells expressing a tumor-specific form of epidermal growth factor receptor. J. Virol 74, 9540–9545 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Snitkovsky, S., Niederman, T.M., Mulligan, R.C. & Young, J.A. Targeting avian leukosis virus subgroup A vectors by using a TVA-VEGF bridge protein. J. Virol. 75, 1571–1575 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Snitkovsky, S. & Young, J.A. Targeting retroviral vector infection to cells that express heregulin receptors using a TVA-heregulin bridge protein. Virology 292, 150–155 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Ohno, K., Sawai, K., Iijima, Y., Levin, B. & Meruelo, D. Cell-specific targeting of Sindbis virus vectors displaying IgG-binding domains of protein A. Nature Biotechnol. 15, 763–767 (1997).

    Article  CAS  Google Scholar 

  21. Dmitriev, I., Kashentseva, E., Rogers, B.E., Krasnykh, V. & Curiel, D.T. Ectodomain of coxsackievirus and adenovirus receptor genetically fused to epidermal growth factor mediates adenovirus targeting to epidermal growth factor receptor-positive cells. J. Virol. 74, 6875–6884 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Douglas, J.T. et al. Targeted gene delivery by tropism-modified adenoviral vectors. Nature Biotechnol. 14, 1574–1578 (1996).

    Article  CAS  Google Scholar 

  23. Kim, J. et al. Targeting adenoviral vectors by using the extracellular domain of the coxsackie-adenovirus receptor: improved potency via trimerization. J. Virol. 76, 1892–1903 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hood, J.D. et al. Tumor regression by targeted gene delivery to the neovasculature. Science 296, 2404–2407 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Nettelbeck, D.M. et al. Targeting of adenovirus to endothelial cells by a bispecific single-chain diabody directed against the adenovirus fiber knob domain and human endoglin (CD105). Mol. Ther. 3, 882–891 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Harari, O.A. et al. Targeting an adenoviral gene vector to cytokine-activated vascular endothelium via E-selectin. Gene Ther. 6, 801–807 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Wickham, T.J., Haskard, D., Segal, D. & Kovesdi, I. Targeting endothelium for gene therapy via receptors up-regulated during angiogenesis and inflammation. Cancer Immunol. Immunother. 45, 149–151 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Heideman, D.A. et al. Selective gene delivery toward gastric and esophageal adenocarcinoma cells via EpCAM-targeted adenoviral vectors. Cancer Gene Ther. 8, 342–351 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Reynolds, P.N. et al. Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo. Nature Biotechnol. 19, 838–842 (2001).

    Article  CAS  Google Scholar 

  30. Dingli, D. & Russell, S.J. Genetic targeting of retroviral vectors. in Vector Targeting for Therapeutic Gene Delivery (eds. Curiel, D.T. & Douglas, J.T.) 267–291 (Wiley-Liss, Hoboken, NJ, 2002).

    Google Scholar 

  31. Russell, S.J., Hawkins, R.E. & Winter, G. Retroviral vectors displaying functional antibody fragments. Nucleic Acids Res. 21, 1081–1085 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kasahara, N., Dozy, A.M. & Kan, Y.W. Tissue-specific targeting of retroviral vectors through ligand–receptor interactions. Science 266, 1373–1376 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Cosset, F.L. et al. Retroviral retargeting by envelopes expressing an N-terminal binding domain. J. Virol. 69, 6314–6322 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Valsesia-Wittmann, S. et al. Modifications in the binding domain of avian retrovirus envelope protein to redirect the host range of retroviral vectors. J. Virol. 68, 4609–4619 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hatziioannou, T., Delahaye, E., Martin, F., Russell, S.J. & Cosset, F.L. Retroviral display of functional binding domains fused to the amino terminus of influenza hemagglutinin. Hum. Gene Ther. 10, 1533–1544 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Morling, F.J., Peng, K.W., Cosset, F.L. & Russell, S.J. Masking of retroviral envelope functions by oligomerizing polypeptide adaptors. Virology 234, 51–61 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Peng, K.W., Vile, R., Cosset, F.L. & Russell, S. Selective transduction of protease-rich tumors by matrix-metalloproteinase-targeted retroviral vectors. Gene Ther. 6, 1552–1557 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Peng, K.W., Morling, F.J., Cosset, F.L., Murphy, G. & Russell, S.J. A gene delivery system activatable by disease-associated matrix metalloproteinases. Hum. Gene Ther. 8, 729–738 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Gordon, E.M. et al. Lesion-targeted injectable vectors for vascular restenosis. Hum. Gene Ther. 12, 1277–1287 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Gordon, E.M. et al. Systemic administration of a matrix-targeted retroviral vector is efficacious for cancer gene therapy in mice. Hum. Gene Ther. 12, 193–204 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Hall, F.L. et al. Targeting retroviral vectors to vascular lesions by genetic engineering of the MoMLV gp70 envelope protein. Hum. Gene Ther. 8, 2183–2192 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Hall, F.L. et al. Molecular engineering of matrix-targeted retroviral vectors incorporating a surveillance function inherent in von Willebrand factor. Hum. Gene Ther. 11, 983–993 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Girod, A. et al. Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2. Nature Med. 5, 1052–1056 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Grifman, M. et al. Incorporation of tumor-targeting peptides into recombinant adeno-associated virus capsids. Mol. Ther. 3, 964–975 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Nicklin, S.A. et al. Efficient and selective AAV2-mediated gene transfer directed to human vascular endothelial cells. Mol. Ther. 4, 174–181 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Ried, M.U., Girod, A., Leike, K., Buning, H. & Hallek, M. Adeno-associated virus capsids displaying immunoglobulin-binding domains permit antibody-mediated vector retargeting to specific cell surface receptors. J. Virol. 76, 4559–4566 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hammond, A.L. et al. Single-chain antibody displayed on a recombinant measles virus confers entry through the tumor-associated carcinoembryonic antigen. J. Virol. 75, 2087–2096 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xiang, Z. et al. Novel, chimpanzee serotype 68-based adenoviral vaccine carrier for induction of antibodies to a transgene product. J. Virol. 76, 2667–2675 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Croyle, M.A., Chirmule, N., Zhang, Y. & Wilson, J.M. “Stealth” adenoviruses blunt cell-mediated and humoral immune responses against the virus and allow for significant gene expression upon readministration in the lung. J. Virol. 75, 4792–4801 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Croyle, M.A., Yu, Q.C. & Wilson, J.M. Development of a rapid method for the PEGylation of adenoviruses with enhanced transduction and improved stability under harsh storage conditions. Hum. Gene Ther. 11, 1713–1722 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Fisher, K.D. et al. Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther. 8, 341–348 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Romanczuk, H. et al. Modification of an adenoviral vector with biologically selected peptides: a novel strategy for gene delivery to cells of choice. Hum. Gene Ther. 10, 2615–2626 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Ogris, M. & Wagner, E. Targeting tumors with non-viral gene delivery systems. Drug Discov. Today 7, 479–485 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. MacLachlan, I., Cullis, P. & Graham, R.W. Progress towards a synthetic virus for systemic gene therapy. Curr. Opin. Mol. Ther. 1, 252–259 (1999).

    CAS  PubMed  Google Scholar 

  55. Kircheis, R. et al. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther. 8, 28–40 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Xu, L., Pirollo, K.F., Tang, W.H., Rait, A. & Chang, E.H. Transferrin-liposome-mediated systemic p53 gene therapy in combination with radiation results in regression of human head and neck cancer xenografts. Hum. Gene Ther. 10, 2941–2952 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Fenske, D.B., MacLachlan, I. & Cullis, P.R. Long-circulating vectors for the systemic delivery of genes. Curr. Opin. Mol. Ther. 3, 153–158 (2001).

    CAS  PubMed  Google Scholar 

  58. Kircheis, R., Wightman, L. & Wagner, E. Design and gene delivery activity of modified polyethylenimines. Adv. Drug Deliv. Rev. 53, 341–358 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Kircheis, R. et al. Tumor-targeted gene delivery of tumor necrosis factor-α induces tumor necrosis and tumor regression without systemic toxicity. Cancer Gene Ther. 9, 673–680 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Ogris, M., Brunner, S., Schuller, S., Kircheis, R. & Wagner, E. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 6, 595–605 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. LeVine, A.M. & Whitsett, J.A. Pulmonary collectins and innate host defense of the lung. Microbes Infect. 3, 161–166 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Malhotra, R. & Sim, R.B. Collectins and viral infection. Trends Microbiol. 3, 240–244 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Reading, P.C., Holmskov, U. & Anders, E.M. Antiviral activity of bovine collectins against rotaviruses. J. Gen. Virol. 79, 2255–2263 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Reading, P.C., Morey, L.S., Crouch, E.C. & Anders, E.M. Collectin-mediated antiviral host defense of the lung: evidence from influenza virus infection of mice. J. Virol. 71, 8204–8212 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. St Croix, B. et al. Genes expressed in human tumor endothelium. Science 289, 1197–1202 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Pereboev, A., Pereboeva, L. & Curiel, D.T. Phage display of adenovirus type 5 fiber knob as a tool for specific ligand selection and validation. J. Virol. 75, 7107–7113 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Engelstadter, M. et al. Targeting human T cells by retroviral vectors displaying antibody domains selected from a phage display library. Hum. Gene Ther. 11, 293–303 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Buchholz, C.J. et al. In vivo selection of protease cleavage sites from retrovirus display libraries. Nature Biotechnol. 16, 951–954 (1998).

    Article  CAS  Google Scholar 

  69. Gordon, E.M., Hall, F.L., Beart, R.W. & Anderson, W.F. Genetic engineering of targeted retroviral vectors. in Vector Targeting for Therapeutic Gene Delivery (eds. Curiel, D.T. & Douglas, J.T.) 293–320 (Wiley-Liss, Hoboken, NJ, 2002).

    Google Scholar 

Download references

Acknowledgements

The author thanks C. Richter King for his critical review of this manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wickham, T. Ligand-directed targeting of genes to the site of disease. Nat Med 9, 135–139 (2003). https://doi.org/10.1038/nm0103-135

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0103-135

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing