Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How chemokines invite leukocytes to dance

Abstract

A prominent activity of the chemokine system is the regulation of leukocyte trafficking. Here we summarize recent findings on the initial steps in chemokine receptor–induced signal transduction in leukocytes. In particular, we discuss the potential influences of the formation of oligomers of ligand and receptor and of coupling between chemokine signals and regulators of the cytoskeleton, such as small GTPases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stages of CCL19-induced T cell polarization.
Figure 2: Early and late intracellular signaling modules that lead to the polarization and migration of naive T cells.

Similar content being viewed by others

References

  1. Middleton, J. et al. Transcytosis and surface presentation of IL-8 ky venular endothelial cells. Cell 91, 385–395 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Pruenster, M. & Rot, A. Throwing light on DARC. Biochem. Soc. Trans. 34, 1005–1008 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Mantovani, A., Bonecchi, R., & Locati, M. Tuning inflammation and immunity by chemokine sequestration: decoys and more. Nat. Rev. Immunol. 6, 907–918 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Haraldsen, G. & Rot, A. Coy decoy with a new ploy: interceptor controls the levels of homeostatic chemokines. Eur. J. Immunol. 36, 1659–1661 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Balabanian, K. et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J. Biol. Chem. 280, 35760–35766 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Burns, J.M. et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J. Exp. Med. 203, 2201–2213 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Boldajipour, B. et al. Control of chemokine-guided cell migration by ligand sequestration. Cell 132, 463–473 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Otero, C., Groettrup, M. & Legler, D.F. Opposite fate of endocytosed CCR7 and its ligands: recycling versus degradation. J. Immunol. 177, 2314–2323 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Allen, S.J., Crown, S.E. & Handel, T.M. Chemokine: receptor structure, interactions, and antagonism. Annu. Rev. Immunol. 25, 787–820 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Blain, K.Y. et al. Structural and functional characterization of CC chemokine CCL14. Biochemistry 46, 10008–10015 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Rajarathnam, K. et al. Neutrophil activation by monomeric interleukin-8. Science 264, 90–92 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Proudfoot, A.E. et al. Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc. Natl. Acad. Sci. USA 100, 1885–1890 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Campanella, G.S. et al. Oligomerization of CXCL10 is necessary for endothelial cell presentation and in vivo activity. J. Immunol. 177, 6991–6998 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Paoletti, S. et al. A rich chemokine environment strongly enhances leukocyte migration and activities. Blood 105, 3405–3412 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Sebastiani, S., Danelon, G., Gerber, B. & Uguccioni, M. CCL22-induced responses are powerfully enhanced by synergy inducing chemokines via CCR4: evidence for the involvement of first beta-strand of chemokine. Eur. J. Immunol. 35, 746–756 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Gouwy, M., Struyf, S., Catusse, J., Proost, P. & Van, D.J. Synergy between proinflammatory ligands of G protein-coupled receptors in neutrophil activation and migration. J. Leukoc. Biol. 76, 185–194 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Gurevich, V.V. & Gurevich, E.V. GPCR monomers and oligomers: it takes all kinds. Trends Neurosci. 31, 74–81 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Blanpain, C. et al. The core domain of chemokines binds CCR5 extracellular domains while their amino terminus interacts with the transmembrane helix bundle. J. Biol. Chem. 278, 5179–5187 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Crump, M.P. et al. Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO J. 16, 6996–7007 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Schwartz, T.W., Frimurer, T.M., Holst, B., Rosenkilde, M.M. & Elling, C.E. Molecular mechanism of 7TM receptor activation–a global toggle switch model. Annu. Rev. Pharmacol. Toxicol. 46, 481–519 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Javitch, J.A. The ants go marching two by two: oligomeric structure of G-protein-coupled receptors. Mol. Pharmacol. 66, 1077–1082 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Damian, M., Martin, A., Mesnier, D., Pin, J.P. & Baneres, J.L. Asymmetric conformational changes in a GPCR dimer controlled by G-proteins. EMBO J. 25, 5693–5702 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Terrillon, S. & Bouvier, M. Roles of G-protein-coupled receptor dimerization. EMBO Rep. 5, 30–34 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Benkirane, M., Jin, D.Y., Chun, R.F., Koup, R.A. & Jeang, K.T. Mechanism of transdominant inhibition of CCR5-mediated HIV-1 infection by CCR5Δ32. J. Biol. Chem. 272, 30603–30606 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Agrawal, L. et al. Role for CCR5Δ32 protein in resistance to R5, R5X4, and X4 human immunodeficiency virus type 1 in primary CD4+ cells. J. Virol. 78, 2277–2287 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Mellado, M., Rodriguez-Frade, J.M., Manes, S. & Martinez, A. Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu. Rev. Immunol. 19, 397–421 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Moriguchi, M. et al. CXCL12 signaling is independent of Jak2 and Jak3. J. Biol. Chem. (2004).

  28. Thelen, M. & Baggiolini, M. Is dimerization of chemokine receptors functionally relevant? Sci. STKE 2001, PE34 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Marullo, S. & Bouvier, M. Resonance energy transfer approaches in molecular pharmacology and beyond. Trends Pharmacol. Sci. 28, 362–365 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Milligan, G. & Smith, N.J. Allosteric modulation of heterodimeric G-protein-coupled receptors. Trends Pharmacol. Sci. 28, 615–620 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Sohy, D., Parmentier, M. & Springael, J.Y. Allosteric trans-inhibition by specific antagonists in CCR2/CXCR4 heterodimers. J. Biol. Chem. 282, 30062–30069 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Huttenrauch, F., Pollok-Kopp, B. & Oppermann, M. G protein-coupled receptor kinases promote phosphorylation and β-arrestin-mediated internalization of CCR5 homo- and hetero-oligomers. J. Biol. Chem. 280, 37503–37515 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein coupled receptor. Science 318, 1258–1265 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Palmesino, E., Moepps, B., Gierschik, P. & Thelen, M. Differences in CXCR4-mediated signaling in B cells. Immunobiology 211, 377–389 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Staudinger, R. & Bandres, J.C. Solubilization of the chemokine receptor CXCR4. Biochem. Biophys. Res. Commun. 274, 153–156 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Babcock, G.J., Farzan, M. & Sodroski, J. Ligand-independent dimerization of CXCR4, a principal HIV-1 coreceptor. J. Biol. Chem. 278, 3378–3385 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Jiao, X., Zhang, N., Xu, X., Oppenheim, J.J. & Jin, T. Ligand-induced partitioning of human CXCR1 chemokine receptors with lipid raft microenvironments facilitates G-protein-dependent signaling. Mol. Cell. Biol. 25, 5752–5762 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Baker, A.M. et al. CD4 interacts constitutively with multiple CCR5 at the plasma membrane of living cells: A vrFRAP approach. J. Biol. Chem. 282, 35163–35168 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Kenakin, T. Inverse, protean, and ligand-selective agonism: matters of receptor conformation. FASEB J. 15, 598–611 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Schwartz, T.W. & Rosenkilde, M.M. Is there a 'lock' for all agonist 'keys' in 7TM receptors? Trends Pharmacol. Sci. 17, 213–216 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Ogilvie, P. et al. Unusual chemokine receptor antagonism involving a mitogen-activated protein kinase pathway. J. Immunol. 172, 6715–6722 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Thelen, M. Dancing to the tune of chemokines. Nat. Immunol. 2, 129–134 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Neptune, E.R., Iiri, T. & Bourne, H.R. Gαi is not required for chemotaxis mediated by Gi-coupled receptors. J. Biol. Chem. 274, 2824–2828 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Kehrl, J.H. Chemoattractant receptor signaling and the control of lymphocyte migration. Immunol. Res. 34, 211–227 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Shi, G. et al. Identification of an alternative Gαq-dependent chemokine receptor signal transduction pathway in dendritic cells and granulocytes. J. Exp. Med. 204, 2705–2718 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Wong, K., Van, K.A. & Bourne, H.R. PDZRhoGEF and myosin II localize RhoA activity to the back of polarizing neutrophil-like cells. J. Cell Biol. 179, 1141–1148 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Molon, B. et al. T cell costimulation by chemokine receptors. Nat. Immunol. 6, 465–471 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Jimenez-Baranda, S. et al. Filamin-A regulates actin-dependent clustering of HIV receptors. Nat. Cell Biol. 9, 838–846 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Stossel, T.P. et al. Filamins as integrators of cell mechanics and signalling. Nat. Rev. Mol. Cell Biol. 2, 138–145 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Terashima, Y. et al. Pivotal function for cytoplasmic protein FROUNT in CCR2-mediated monocyte chemotaxis. Nat. Immunol. 6, 827–835 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Marchese, A. et al. The E3 ubiquitin ligase AIP4 mediates ubiquitination and sorting of the G protein-coupled receptor CXCR4. Dev. Cell 5, 709–722 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Fan, G.H., Yang, W., Sai, J. & Richmond, A. Hsc/Hsp70 interacting protein (hip) associates with CXCR2 and regulates the receptor signaling and trafficking. J. Biol. Chem. 277, 6590–6597 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Honczarenko, M. et al. SDF-1 responsiveness does not correlate with CXCR4 expression levels of developing human bone marrow B cells. Blood 94, 2990–2998 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Scandella, E. et al. CCL19/CCL21-triggered signal transduction and migration of dendritic cells require prostaglandin E2. Blood 103, 1595–1601 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. D'Amico, G. et al. Uncoupling of inflammatory chemokine receptors by IL-10: generation of functional decoys. Nat. Immunol. 1, 387–391 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Bajenoff, M. et al. Highways, byways and breadcrumbs: directing lymphocyte traffic in the lymph node. Trends Immunol. 28, 346–352 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Cahalan, M.D., Parker, I., Wei, S.H., & Miller, M.J. Two-photon tissue imaging: seeing the immune system in a fresh light. Nat. Rev. Immunol. 2, 872–880 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Sumen, C., Mempel, T.R., Mazo, I.B. & Von Andrian, U.H. Intravital microscopy: visualizing immunity in context. Immunity 21, 315–329 (2004).

    CAS  PubMed  Google Scholar 

  59. Auffray, C. et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317, 666–670 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Phillipson, M. et al. Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. J. Exp. Med. 203, 2569–2575 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Lo, C.G., Lu, T.T. & Cyster, J.G. Integrin-dependence of lymphocyte entry into the splenic white pulp. J. Exp. Med. 197, 353–361 (2003).

    Article  CAS  Google Scholar 

  62. Woolf, E. et al. Lymph node chemokines promote sustained T lymphocyte motility without triggering stable integrin adhesiveness in the absence of shear forces. Nat. Immunol. 8, 1076–1085 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Friedl, P. & Brocker, E.B. T cell migration in three-dimensional extracellular matrix: guidance by polarity and sensations. Dev. Immunol. 7, 249–266 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Lammermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Kinashi, T. Intracellular signalling controlling integrin activation in lymphocytes. Nat. Rev. Immunol. 5, 546–559 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Ley, K., Laudanna, C., Cybulsky, M.I., & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Pasvolsky, R. et al. A LAD-III syndrome is associated with defective expression of the Rap-1 activator CalDAG-GEFI in lymphocytes, neutrophils, and platelets. J. Exp. Med. 204, 1571–1582 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Banno, A. & Ginsberg, M.H. Integrin activation. Biochem. Soc. Trans. 36, 229–234 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Moser, M., Nieswandt, B., Ussar, S., Pozgajova, M. & Fassler, R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat. Med. 14, 325–330 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Russell, S. How polarity shapes the destiny of T cells. J. Cell Sci. 121, 131–136 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Real, E., Faure, S., Donnadieu, E. & Delon, J. Cutting edge: atypical PKCs regulate T lymphocyte polarity and scanning behavior. J. Immunol. 179, 5649–5652 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Hannigan, M. et al. Neutrophils lacking phosphoinositide 3-kinase γ show loss of directionality during N-formyl-Met-Leu-Phe-induced chemotaxis. Proc. Natl. Acad. Sci. USA 99, 3603–3608 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nombela-Arrieta, C. et al. Differential requirements for DOCK2 and phosphoinositide-3-kinase γ during T and B lymphocyte homing. Immunity 21, 429–441 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Shimonaka, M. et al. Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow. J. Cell Biol. 161, 417–427 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Gerard, A., Mertens, A.E., Van der Kammen, R.A. & Collard, J.G. The Par polarity complex regulates Rap1- and chemokine-induced T cell polarization. J. Cell Biol. 176, 863–875 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Katagiri, K., Maeda, A., Shimonaka, M. & Kinashi, T. RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nat. Immunol. 4, 741–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Katagiri, K., Imamura, M. & Kinashi, T. Spatiotemporal regulation of the kinase Mst1 by binding protein RAPL is critical for lymphocyte polarity and adhesion. Nat. Immunol. 7, 919–928 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Fukui, Y. et al. Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature 412, 826–831 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Nombela-Arrieta, C. et al. A central role for DOCK2 during interstitial lymphocyte motility and sphingosine-1-phosphate-mediated egress. J. Exp. Med. 204, 497–510 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Han, S.B. et al. Rgs1 and Gnai2 regulate the entrance of B lymphocytes into lymph nodes and B cell motility within lymph node follicles. Immunity 22, 343–354 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Huang, J.H. et al. Requirements for T lymphocyte migration in explanted lymph nodes. J. Immunol. 178, 7747–7755 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Okada, T. & Cyster, J.G. CC chemokine receptor 7 contributes to Gi-dependent T cell motility in the lymph node. J. Immunol. 178, 2973–2978 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Worbs, T., Mempel, T.R., Bolter, J., Von Andrian, U.H. & Forster, R. CCR7 ligands stimulate the intranodal motility of T lymphocytes in vivo. J. Exp. Med. 204, 489–495 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Kunisaki, Y. et al. DOCK2 is a Rac activator that regulates motility and polarity during neutrophil chemotaxis. J. Cell Biol. 174, 647–652 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Reif, K. et al. Cutting edge: differential roles for phosphoinositide 3-kinases, p110γ and p110δ, in lymphocyte chemotaxis and homing. J. Immunol. 173, 2236–2240 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Suire, S. et al. Gβγbetagammas and the Ras binding domain of p110γ are both important regulators of PI3Kγ signalling in neutrophils. Nat. Cell Biol. 8, 1303–1309 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Wymann, M.P. & Pirola, L. Structure and function of phosphoinositide 3-kinases. Biochim. Biophys. Acta Lipids Lipid Metab. 1436, 127–150 (1998).

    Article  CAS  Google Scholar 

  88. Martin, A.L., Schwartz, M.D., Jameson, S.C. & Shimizu, Y. Selective regulation of CD8 effector T cell migration by the p110γ isoform of phosphatidylinositol 3-kinase. J. Immunol. 180, 2081–2088 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Vicente-Manzanares, M. et al. Control of lymphocyte shape and the chemotactic response by the GTP exchange factor Vav. Blood 105, 3026–3034 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Takesono, A., Horai, R., Mandai, M., Dombroski, D. & Schwartzberg, P.L. Requirement for Tec kinases in chemokine-induced migration and activation of Cdc42 and Rac. Curr. Biol. 14, 917–922 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Ludford-Menting, M.J. et al. A network of PDZ-containing proteins regulates T cell polarity and morphology during migration and immunological synapse formation. Immunity 22, 737–748 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Pearce, G. et al. Signaling protein SWAP-70 is required for efficient B cell homing to lymphoid organs. Nat. Immunol. 7, 827–834 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Missy, K. et al. αPIX RhoGEF regulates lymphocyte functions and antigen receptor signaling. Mol. Cell Biol. 28, 3776–3789 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Dong, X. et al. P-rex1 is a primary rac2 guanine nucleotide exchange factor in mouse neutrophils. Curr. Biol. 15, 1874–1879 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Welch, H.C. et al. P-rex1 regulates neutrophil function. Curr. Biol. 15, 1867–1873 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Hirsch, E. et al. Central role for G protein-coupled phosphoinositide 3-kinase γ in inflammation. Science 287, 1049–1053 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Li, Z. et al. Roles of PLC-β2 and -β3 and PI3Kγ in chemoattractant-mediated signal transduction. Science 287, 1046–1049 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Sasaki, T. et al. Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration. Science 287, 1040–1046 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Heit, B., Liu, L., Colarusso, P., Puri, K.D. & Kubes, P. PI3K accelerates, but is not required for, neutrophil chemotaxis to fMLP. J. Cell Sci. 121, 205–214 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Thelen, M., Uguccioni, M. & Bösiger, J. PI 3-kinase-dependent and independent chemotaxis of human neutrophil leukocytes. Biochem. Biophys. Res. Commun. 217, 1255–1262 (1995).

    Article  CAS  PubMed  Google Scholar 

  101. Li, Z. et al. Directional sensing requires Gβγ-mediated PAK1 and PIXα-dependent activation of Cdc42. Cell 114, 215–227 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Krummel, M.F. & Macara, I. Maintenance and modulation of T cell polarity. Nat. Immunol. 7, 1143–1149 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Jacobelli, J., Chmura, S.A., Buxton, D.B., Davis, M.M. & Krummel, M.F. A single class II myosin modulates T cell motility and stopping, but not synapse formation. Nat. Immunol. 5, 531–538 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Bardi, G., Niggli, V. & Loetscher, P. Rho kinase is required for CCR7-mediated polarization and chemotaxis of T lymphocytes. FEBS Lett. 542, 79–83 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Chhabra, E.S. & Higgs, H.N. The many faces of actin: matching assembly factors with cellular structures. Nat. Cell Biol. 9, 1110–1121 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Goley, E.D. & Welch, M.D. The ARP2/3 complex: an actin nucleator comes of age. Nat. Rev. Mol. Cell Biol. 7, 713–726 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Cotta-de-Almeida, V. et al. Wiskott Aldrich syndrome protein (WASP) and N-WASP are critical for T cell development. Proc. Natl. Acad. Sci. USA 104, 15424–15429 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Snapper, S.B. et al. WASP deficiency leads to global defects of directed leukocyte migration in vitro and in vivo. J. Leukoc. Biol. 77, 993–998 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Gallego, M.D. et al. WIP and WASP play complementary roles in T cell homing and chemotaxis to SDF-1α. Int. Immunol. 18, 221–232 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Oikawa, T. et al. PtdIns(3,4,5)P3 binding is necessary for WAVE2-induced formation of lamellipodia. Nat. Cell Biol. 6, 420–426 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Nakanishi, O., Suetsugu, S., Yamazaki, D. & Takenawa, T. Effect of WAVE2 phosphorylation on activation of the Arp2/3 complex. J. Biochem. 141, 319–325 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Eisenmann, K.M. et al. T cell responses in mammalian diaphanous-related formin mDia1 knock-out mice. J. Biol. Chem. 282, 25152–25158 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Sakata, D. et al. Impaired T lymphocyte trafficking in mice deficient in an actin-nucleating protein, mDia1. J Exp. Med. 204, 2031–2038 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Locati, M. et al. Inhibition of monocyte chemotaxis to C–C chemokines by antisense oligonucleotide for cytosolic phospholipase A2 . J. Biol. Chem. 271, 6010–6016 (1996).

    Article  CAS  PubMed  Google Scholar 

  115. Van Haastert, P.J., Keizer-Gunnink, I. & Kortholt, A. Essential role of PI3-kinase and phospholipase A2 in Dictyostelium discoideum chemotaxis. J. Cell Biol. 177, 809–816 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Chen, L. et al. PLA2 and PI3K/PTEN pathways act in parallel to mediate chemotaxis. Dev. Cell 12, 603–614 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to colleagues whose work we were unable to cite because of space constraints. Supported by the Helmut Horten Foundation (M.T.), the Swiss National Science Foundation (M.T. and J.V.S.), the European Union Sixth Framework Programme (INNOCHEM; LSHB-CT-2005-518167 to M.T.; MEXT-CT-2005-025405 to J.V.S.) and the Swiss State Secretariat for Education and Research (J.V.S.)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcus Thelen or Jens V Stein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Text and Figure (PDF 372 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thelen, M., Stein, J. How chemokines invite leukocytes to dance. Nat Immunol 9, 953–959 (2008). https://doi.org/10.1038/ni.f.207

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.f.207

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing