Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The genetics of complex autoimmune diseases: non-MHC susceptibility genes

Abstract

Susceptibility to complex autoimmune diseases (AIDs) is a multigenic phenotype affected by a variety of genetic and environmental or stochastic factors. After over a decade of linkage analyses, the identification of non-major histocompatibility complex (non-MHC) susceptibility alleles has proved to be difficult, predominantly because of extensive genetic heterogeneity and possible epistatic interactions among the multiple genes required for disease development. Despite these difficulties, progress has been made in elucidating the genetic mechanisms that influence the inheritance of susceptibility, and the pace of gene discovery is accelerating. An intriguing new finding has been the colocalization of several AID susceptibility genes in both rodent models and human linkage studies. This may indicate that several susceptibility alleles affect multiple AIDs, or alternatively that genomic organization has resulted in the clustering of many immune system genes. The completion of the human genome sequence, coupled with the imminent completion of the mouse genome, should yield key information that will dramatically enhance the rate of gene discovery in complex conditions such as AID susceptibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Threshold liabilities in autoimmune disease.
Figure 2: Chromosomal susceptibility regions associated with autoimmune disorders detected in human and mouse genome scans.

Similar content being viewed by others

References

  1. Vyse, T. J. & Todd, J. A. Genetic analysis of autoimmune disease. Cell 85, 311–318 (1996).

    CAS  PubMed  Google Scholar 

  2. Rose, N. R. & Mackay, I. R. (eds) The Autoimmune Diseases. (Academic Press London, 1999).

    Google Scholar 

  3. Silman, A. J. et al. Twin concordance rates for rheumatoid arthritis: results from a nationwide study. Br. J. Rheumatol. 32, 903–907 (1993).

    CAS  PubMed  Google Scholar 

  4. Winchester, R. in Systemic lupus erythematosus (ed. Lahita, R. G.) 65–85 (Churchill Livingstone, New York, 1992).

    Google Scholar 

  5. Davies, J. L. et al. A genome-wide search for human type 1 diabetes susceptibility genes. Nature 371, 130–136 (1994).

    CAS  PubMed  Google Scholar 

  6. Moser, K. L. et al. Genome scan of human systemic lupus erythematosus: evidence for linkage on chromosome 1q in african-american pedigrees. Proc. Natl Acad. Sci. USA 95, 14869–14874 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mein, C. A. et al. A search for type 1 diabetes susceptibility genes in families from the United Kingdom. Nature Genet. 19, 297–300 (1998).

    CAS  PubMed  Google Scholar 

  8. Rowe, R. E. et al. Linkage and association between insulin-dependent diabetes mellitus (IDDM) susceptibility and markers near the glucokinase gene on chromosome 7. Nature Genet. 10, 240–242 (1995).

    CAS  PubMed  Google Scholar 

  9. Jawaheer, D. et al. A genomewide screen in multiplex rheumatoid arthritis families suggests genetic overlap with other autoimmune diseases. Am. J. Hum. Genet. 68, 927–936 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gaffney, P. M. et al. A genome-wide search for susceptibility genes in human systemic lupus erythematosus sib-pair families. Pro. Natl Acad. Sci. USA 95, 14875–14879 (1998).

    CAS  Google Scholar 

  11. Shai, R. et al. Genome-wide screen for systemic lupus erythematosus susceptibility genes in multiplex families. Hum. Mol. Genet. 8, 639–644 (1999).

    CAS  PubMed  Google Scholar 

  12. Luo, D. F. et al. Confirmation of three susceptibility genes to insulin-dependent diabetes mellitus: IDDM4, IDDM5 and IDDM8. Hum. Mol. Genet. 5, 693–698 (1996).

    CAS  PubMed  Google Scholar 

  13. Concannon, P. et al. A second-generation screen of the human genome for susceptibility to insulin-dependent diabetes mellitus. Nature Genet. 19, 292–296 (1998).

    CAS  PubMed  Google Scholar 

  14. Sawcer, S. et al. A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nature Genet. 13, 464–468 (1996).

    CAS  PubMed  Google Scholar 

  15. Ebers, G. C. et al. A full genome search in multiple sclerosis. Nature Genet. 13, 472–476 (1996).

    CAS  PubMed  Google Scholar 

  16. Salmon, J. E. et al. Fc γ RIIA alleles are heritable risk factors for lupus nephritis in African Americans. J. Clin. Invest. 97, 1348–1354 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Leech, N. J. et al. Genetic and immunological markers of insulin dependent diabetes in Black Americans. Autoimmunity 22, 27–32 (1995).

    CAS  PubMed  Google Scholar 

  18. Lindqvist, A. K. et al. A susceptibility locus for human systemic lupus erythematosus (hSLE1) on chromosome 2q. J. Autoimmunity 14, 169–178 (2000).

    CAS  Google Scholar 

  19. Rozzo, S. J., Vyse, T. J., Drake, C. G. & Kotzin, B. L. Effect of genetic background on the contribution of New Zealand black loci to autoimmune lupus nephritis. Proc. Natl Acad. Sci. USA 93, 15164–15168 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rozzo, S. J., Vyse, T. J., Menze, K., Izui, S. & Kotzin, B. L. Enhanced susceptibility to lupus contributed from the nonautoimmune C57BL/10, but not C57BL/6, genome. J. Immunol. 164, 5515–5521 (2000).

    CAS  PubMed  Google Scholar 

  21. Holmdahl, R. Genetics of susceptibility to chronic experimental encephalomyelitis and arthritis. Curr. Opin. Immunol. 10, 710–717 (1998).

    CAS  PubMed  Google Scholar 

  22. Jirholt, J. et al. Genetic linkage analysis of collagen-induced arthritis in the mouse. Eur. J. Immunol. 28, 3321–3328 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Prochazka, M., Serreze, D. V., Frankel, W. N. & Leiter, E. H. NOR/Lt mice: MHC-matched diabetes-resistant control strain for NOD mice. Diabetes 41, 98–106 (1992).

    CAS  PubMed  Google Scholar 

  24. McDuffie, M. Derivation of diabetes-resistant congenic lines from the nonobese diabetic mouse. Clin. Immunol. 96, 119–130 (2000).

    CAS  PubMed  Google Scholar 

  25. McDuffie, M. Genetics of autoimmune diabetes in animal models. Curr. Opin. Immunol. 10, 704–709 (1998).

    CAS  PubMed  Google Scholar 

  26. Hogarth, M. B. et al. Multiple lupus susceptibility loci map to chromosome 1 in BXSB mice. J. Immunol. 161, 2753–2761 (1998).

    CAS  PubMed  Google Scholar 

  27. Gray, M. et al. Genome scan of human systemic lupus erythematosus by regression modeling: evidence of linkage and epistasis at 4p16–15.2. Am. J. Hum. Genet. 67, 1460–1469 (2000).

    Google Scholar 

  28. Prins, J.-B. et al. Linkage on chromosome 3 of autoimmune diabetes and defective Fc receptor for IgG in NOD mice. Science 260, 695–698 (1993).

    CAS  PubMed  Google Scholar 

  29. Sundvall, M. et al. Identification of murine loci associated with susceptibility to chronic experimental autoimmune encephalomyelitis. Nature Genet. 10, 313–317 (1995).

    CAS  PubMed  Google Scholar 

  30. Morel, L. et al. Genetic reconstitution of systemic lupus erythematosus immunopathology with polycongenic murine strains. Proc. Natl Acad. Sci. USA 97, 6670–6675 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Morel, L., Tian, X.-H., Croker, B. P. & Wakeland, E. K. Epistatic modifiers of autoimmunity in a murine model of lupus nephritis. Immunity 11, 131–139 (1999).

    CAS  PubMed  Google Scholar 

  32. Morel, L., Rudofsky, U. H., Longmate, J. A., Schiffenbauer, J. & Wakeland, E. K. Polygenic control of susceptibility to murine systemic lupus erythematosus. Immunity 1, 219–229 (1994).

    CAS  PubMed  Google Scholar 

  33. Kelley, V. E. & Winkelstein, A. Age- and sex-related glomerulonephritis in New Zealand white mice. Clin. Immunol. Immunopathol. 16, 142–150 (1980).

    CAS  PubMed  Google Scholar 

  34. Ghosh, S. et al. Polygenic control of autoimmune diabetes in nonobese diabetic mice. Nature Genet. 4, 404–409 (1993).

    CAS  PubMed  Google Scholar 

  35. Wu, J. M., Longmate, J. A., Adamus, G., Hargrave, P. A. & Wakeland, E. K. Interval mapping of quantitative trait loci controlling humoral immunity to exogenous antigens: evidence that non-MHC immune response genes may also influence susceptibility to autoimmunity. J. Immunol. 157, 2498–2505 (1996).

    CAS  PubMed  Google Scholar 

  36. Bickerstaff, M. C. et al. Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nature Med. 5, 694–697 (1999).

    CAS  PubMed  Google Scholar 

  37. Bolland, S. & Ravetch, J. V. Spontaneous autoimmune disease in Fc(γ)RIIB-deficient mice results from strain-specific epistasis. Immunity 13, 277–285 (2000).

    CAS  PubMed  Google Scholar 

  38. Botto, M. et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nature Genet. 19, 56–59 (1998).

    CAS  PubMed  Google Scholar 

  39. Fossati, L. et al. An MRL/MpJ-lpr/lpr substrain with a limited expansion of lpr double-negative T cells and a reduced autoimmune syndrome. Int. Immunol. 5, 525–532 (1993).

    CAS  PubMed  Google Scholar 

  40. Warren, R. W., Caster, S. A., Roths, J. B., Murphy, E. & Pisetsky, D. S. The influence of the lpr gene on B cell activation: differential antibody expression in lpr congenic mouse strains. Clin. Immunol. Immunopathol. 31, 65–77 (1984).

    CAS  PubMed  Google Scholar 

  41. Kurtzke, J. F. Epidemiologic contributions to multiple sclerosis: an overview. Neurology 30, 61–79 (1980).

    CAS  PubMed  Google Scholar 

  42. Castaño, L. & Eisenbarth, G. S. Type-I diabetes: a chronic autoimmune disease of human, mouse, and rat. Annu. Rev. Immunol. 8, 647–679 (1990).

    PubMed  Google Scholar 

  43. Kotzin, B. L. & O'Dell, J. R. in Samter's Immunologic Diseases (eds. Frank, M. M., Austen, K. F., Claman, H. N. & Unanue, E. R.) 667–697 (Little, Brown, Boston, 1995).

    Google Scholar 

  44. Wicker, L. S., Todd, J. A. & Peterson, L. B. Genetic control of autoimmune diabetes in the NOD mouse. Annu. Rev. Immunol. 13, 179–200 (1995).

    CAS  PubMed  Google Scholar 

  45. Theofilopoulos, A. N., Kofler, R., Singer, P. . & Dixon, F. J. Molecular genetics of murine lupus models. Adv. Immunol. 46, 61–109 (1989).

    CAS  PubMed  Google Scholar 

  46. Kotzin, B. Systemic lupus erythematosus. Cell 85, 303–306 (1996).

    CAS  PubMed  Google Scholar 

  47. Willer, C. J. & Ebers, G. C. Susceptibility to multiple sclerosis: interplay between genes and environment. Curr. Opin. Neurol. 13, 241–247 (2000).

    CAS  PubMed  Google Scholar 

  48. Kurtzke, J. F. & Delasnerie, L. Reflection on the geographic distribution of multiple sclerosis in France. Acta Neurol. Scand. 93, 110–117.

  49. Kalman, B. & Lublin, F. D. The genetics of multiple sclerosis. A review. Biomed. Pharmacother. 53, 358–370 (1999).

    CAS  PubMed  Google Scholar 

  50. Harley, J. B. & James, J. A. Epstein–Barr virus infection may be an environmental risk factor for systemic lupus erythematosus in children and teenagers. Arthritis Rheum. 42, 1782–1783 (1999).

    CAS  PubMed  Google Scholar 

  51. James, J. A. et al. An increased prevalence of Epstein–Barr virus infection in young patients suggests a possible etiology for systemic lupus erythematosus. J. Clin. Invest. 100, 3019–3026 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Todd, J. A. A protective role of the environment in the development of type 1 diabetes? Diabetes Med. 8, 906–910 (1991).

    CAS  Google Scholar 

  53. Eisenberg, R.A., Craven, S. Y., Warren, R. W. & Cohen, P. L. Stochastic control of anti-Sm autoantibodies in MRL/Mp-lpr/lpr mice. J. Clin. Invest. 80, 691–697 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Gelehrter, T. D. & Collins, F. S. Principles of Medical Genetics. (Williams and Wilkins, Baltimore, MD, 1990).

    Google Scholar 

  55. Wright, S. An analysis of variability in number of digits in an inbred strain of guinea pigs. Genetics 19, 506–536 (1933).

    Google Scholar 

  56. Risch, N., Ghosh, S. & Todd, J. A. Statistical evaluation of multiple-locus linkage data in experimental species and its relevance to human studies: application to nonobese diabetic (NOD) mouse and human insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 53, 702–714 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. McAleer, M. A. et al. Crosses of NOD mice with the related NON strain: a polygenic model for type 1 diabetes. Diabetes 44, 1186–1195 (1995).

    CAS  PubMed  Google Scholar 

  58. Drake, C. G. et al. Analysis of the New Zealand Black contribution to lupus-like renal disease. Multiple genes that operate in a threshold manner. J. Immunol. 154, 2441–2447 (1995).

    CAS  PubMed  Google Scholar 

  59. Vyse, T. J., Todd, J. A. & Kotzin, B. L. in The Autoimmune Diseases (eds Rose, N. R. & Mackay, I. R.) 85–118 (Academic Press, London, 1998).

    Google Scholar 

  60. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. The Finnish-German APECED Consortium. Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy. Nature Genet. 17, 399–403 (1997).

  61. Nagamine, K. et al. Positional cloning of the APECED gene. Nature Genet. 17, 393–398 (1997).

    CAS  PubMed  Google Scholar 

  62. Eaves, I. A. et al. The genetically isolated populations of Finland and Sardinia may not be a panacea for linkage disequilibrium mapping of common disease genes. Nature Genet. 25, 320–323 (2000).

    CAS  PubMed  Google Scholar 

  63. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    CAS  PubMed  Google Scholar 

  64. Halushka, M. K. et al. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nature Genet. 22, 239–247 (1999).

    CAS  PubMed  Google Scholar 

  65. Cargill, M. et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genet. 22, 231–238 (1999).

    CAS  PubMed  Google Scholar 

  66. Spielman, R. S. & Ewens, W. J. The TDT and other family-based tests for linkage disequilibrium and association. Am. J. Hum. Genet. 59, 983–989 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Marron, M. P. et al. Genetic and physical mapping of a type 1 diabetes susceptibility gene (IDDM12) to a 100-kb phagemid artificial chromosome clone containing D2S72-CTLA4-D2S105 on chromosome 2q33. Diabetes 49, 492–499 (2000).

    CAS  PubMed  Google Scholar 

  68. Marron, M. P. et al. Insulin-dependent diabetes mellitus (IDDM) is associated with CTLA4 polymorphisms in multiple ethnic groups. Hum. Mol. Genet. 6, 1275–1282 (1997).

    CAS  PubMed  Google Scholar 

  69. Criswell, L. A. et al. PARP alleles and SLE: failure to confirm association with disease susceptibility. J. Clin. Invest. 105, 1501–1502 (2000).

    CAS  PubMed  Google Scholar 

  70. Bell, G. I., Horita, S. & Karam, J. H. A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus. Diabetes 33, 176–183 (1984).

    CAS  PubMed  Google Scholar 

  71. Bell, G. I. et al. Recessive inheritance for the insulin linked IDDM predisposing gene. Am. J. Hum. Genet. 37, 188 (1984).

  72. Bennett, S. T. et al. Insulin VNTR allele-specific effect in type 1 diabetes depends on identity of untransmitted paternal allele. The IMDIAB Group. Nature Genet. 17, 350–352 (1997).

    CAS  PubMed  Google Scholar 

  73. Pugliese, A. et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nature Genet. 15, 293–297 (1997).

    CAS  PubMed  Google Scholar 

  74. Paquette, J., Giannoukakis, N., Polychronakos, C., Vafiadis, P. & Deal, C. The INS 5′ variable number of tandem repeats is associated with IGF2 expression in humans. J. Biol. Chem. 273, 14158–14164 (1998).

    CAS  PubMed  Google Scholar 

  75. Vafiadis, P., Grabs, R., Goodyer, C. G., Colle, E. & Polychronakos, C. A functional analysis of the role of IGF2 in IDDM2-encoded susceptibility to type 1 diabetes. Diabetes 47, 831–836 (1998).

    CAS  PubMed  Google Scholar 

  76. Walport, M. J., Davies, K. A. & Botto, M. C1q and systemic lupus erythematosus. Immunobiology 199, 265–285 (1998).

    CAS  PubMed  Google Scholar 

  77. Carroll, M. C. The lupus paradox. Nature Genet. 19, 3–4 (1998).

    CAS  PubMed  Google Scholar 

  78. Taylor, P. R. et al. A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J. Exp. Med. 192, 359–366 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Quigg, R. et al. Immune complex glomerulonephritis in C4- and C3-deficient mice. Kidney Int. 53, 320–330 (1998).

    CAS  PubMed  Google Scholar 

  80. Prodeus, A. P. et al. A critical role for complement in maintenance of self-tolerance. Immunity 9, 721–731 (1998).

    CAS  PubMed  Google Scholar 

  81. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001).

    CAS  PubMed  Google Scholar 

  82. Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    CAS  PubMed  Google Scholar 

  83. Snell, G. D. Methods for the study of histocompatibility genes. J. Genetics 49, 87 (1948).

  84. Lyons, P. A. et al. Congenic mapping of the type 1 diabetes locus, Idd3, to a 780-kb region of mouse chromosome 3: identification of a candidate segment of ancestral DNA by haplotype mapping. Genome Res. 10, 446–453 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Morel, L., Mohan, C., Croker, B. P., Tian, X.-H. & Wakeland, E. K. Functional dissection of systemic lupus erythematosus using congenic mouse strains. J. Immunol. 158, 6019–6028 (1997).

    CAS  PubMed  Google Scholar 

  86. Morel, L., Blenman, K. R., Croker, B. P. & Wakeland, E. K. The major murine systemic lupus erythematosus susceptibility locus, Sle1, is a cluster of functionally related genes. Proc. Natl Acad. Sci. USA 98, 1787–1792 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. McIndoe, R. A. et al. Localization of non-Mhc collagen-induced arthritis susceptibility loci in DBA/1j mice. Proc. Natl Acad. Sci. USA 96, 2210–2214 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lundberg, C., Lidman, O., Holmdahl, R., Olsson, T. & Piehl, F. Neurodegeneration and glial activation patterns after mechanical nerve injury are differentially regulated by non-MHC genes in congenic inbred rat strains. J. Comp. Neurol. 431, 75–87 (2001).

    CAS  PubMed  Google Scholar 

  89. Morel, L., Yu, Y., Blenman, K. R., Caldwell, R. A. & Wakeland, E. K. Production of congenic mouse strains carrying SLE-susceptibility genes derived from the SLE-prone NZM/Aeg2410 strain. Mamm. Genome 7, 335–339 (1996).

    CAS  PubMed  Google Scholar 

  90. Serreze, D. V. et al. Subcongenic analysis of the Idd13 locus in NOD/Lt mice: evidence for several susceptibility genes including a possible diabetogenic role for β2-microglobulin. J. Immunol. 160, 1472–1478 (1998).

    CAS  PubMed  Google Scholar 

  91. Lord, C. J. et al. Mapping the diabetes polygene Idd3 on mouse chromosome 3 by use of novel congenic strains. Mamm. Genome 6, 563–570 (1995).

    CAS  PubMed  Google Scholar 

  92. Podolin, P. L. et al. Differential glycosylation of interleukin 2, the molecular basis for the NOD Idd3 type 1 diabetes gene? Cytokine 12, 477–482 (2000).

    CAS  PubMed  Google Scholar 

  93. Siegmund, T. et al. Analysis of the mouse CD30 gene: a candidate for the NOD mouse type 1 diabetes locus Idd9.2. Diabetes 49, 1612–1616 (2000).

    CAS  PubMed  Google Scholar 

  94. Lyons, P. A. et al. The NOD Idd9 genetic interval influences the pathogenicity of insulitis and contains molecular variants of Cd30, Tnfr2, and Cd137. Immunity 13, 107–115 (2000).

    CAS  PubMed  Google Scholar 

  95. Becker, K. G. et al. Clustering of non-MHC susceptibility candidate loci in human autoimmune diseases. Proc. Natl Acad. Sci. USA 95, 9979–9984 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Becker, K. G. Comparative genetics of type 1 diabetes and autoimmune disease: common loci, common pathways? Diabetes 48, 1353–1358 (1999).

    CAS  PubMed  Google Scholar 

  97. Griffiths, M. M., Encinas, J. A., Remmers, E. F., Kuchroo, V. K. & Wilder, R. L. Mapping autoimmunity genes. Curr. Opin. Immunol. 11, 689–700 (1999).

    CAS  PubMed  Google Scholar 

  98. Podolin, P. L. et al. Congenic mapping of the insulin-dependent diabetes (Idd) gene, Idd10, localizes two genes mediating the Idd10 effect and eliminates the candidate Fcrg1. J. Immunol. 159, 1835–1843 (1997).

    CAS  PubMed  Google Scholar 

  99. Cordell, H. J., Todd, J. A. & Lathrop, G. M. Mapping multiple linked quantitative trait loci in non-obese diabetic mice using a stepwise regression strategy. Genet. Res. 71, 51–64 (1998).

    CAS  PubMed  Google Scholar 

  100. Hill, N. J. et al. NOD Idd5 locus controls insulitis and diabetes and overlaps the orthologous CTLA4/IDDM12 and NRAMP1 loci in humans. Diabetes 49, 1744–1747 (2000).

    CAS  PubMed  Google Scholar 

  101. Hattori, M. et al. Cutting edge: homologous recombination of the MHC class I K region defines new MHC-linked diabetogenic susceptibility gene(s) in nonobese diabetic mice. J. Immunol. 163, 1721–1724 (1999).

    CAS  PubMed  Google Scholar 

  102. Podolin, P. L. et al. Localization of two insulin-dependent diabetes (Idd) genes to Idd10 region on mouse chromosome 3. Mamm. Genome 9, 283–286 (1998).

    CAS  PubMed  Google Scholar 

  103. Caron, H. et al. The human transcriptome map: clustering of highly expressed genes in chromosomal domains. Science 291, 1289–1292 (2001).

    CAS  PubMed  Google Scholar 

  104. Antoch, M. P. et al. Functional identification of the mouse circadian clock gene by transgenic BAC rescue. Cell 89, 655–667 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Probst, F. J. et al. Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science 280, 1447–1451 (1998).

    PubMed  Google Scholar 

  106. Redondo, M. J. et al. Genetic determination of islet cell autoimmunity in monozygotic twin, dizygotic twin, and non-twin siblings of patients with type 1 diabetes: prospective twin study. Br. Med. J. 318, 698–702 (1999).

    CAS  Google Scholar 

  107. Chan, O. T., Madaio, M. P. & Shlomchik, M. J. B cells are required for lupus nephritis in the polygenic, Fas-intact MRL model of systemic autoimmunity. J. Immunol. 163, 3592–3596 (1999).

    CAS  PubMed  Google Scholar 

  108. Gulko, P. & Winchester, R. Lupus: Molecular and cellular pathogenesis (eds Kammer, G. & Tsokos, G. C.) 101–123 (Humana Press, Totowa, 1999).

    Google Scholar 

  109. She, J. X. & Marron, M. P. Genetic susceptibility factors in type 1 diabetes: linkage, disequilibrium and functional analyses. Curr. Opin. Immunol. 10, 682–689 (1998).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Wakeland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wanstrat, A., Wakeland, E. The genetics of complex autoimmune diseases: non-MHC susceptibility genes. Nat Immunol 2, 802–809 (2001). https://doi.org/10.1038/ni0901-802

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0901-802

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing