Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pre-subduction metasomatic enrichment of the oceanic lithosphere induced by plate flexure

Abstract

Oceanic lithospheric mantle is generally interpreted as depleted mantle residue after mid-ocean ridge basalt extraction. Several models have suggested that metasomatic processes can refertilize portions of the lithospheric mantle before subduction. Here, we report mantle xenocrysts and xenoliths in petit-spot lavas that provide direct evidence that the lower oceanic lithosphere is affected by metasomatic processes. We find a chemical similarity between clinopyroxene observed in petit-spot mantle xenoliths and clinopyroxene from melt-metasomatized garnet or spinel peridotites, which are sampled by kimberlites and intracontinental basalts respectively. We suggest that extensional stresses in oceanic lithosphere, such as plate bending in front of subduction zones, allow low-degree melts from the seismic low-velocity zone to percolate, interact and weaken the oceanic lithospheric mantle. Thus, metasomatism is not limited to mantle upwelling zones such as mid-ocean ridges or mantle plumes, but could be initiated by tectonic processes. Since plate flexure is a global mechanism in subduction zones, a significant portion of oceanic lithospheric mantle is likely to be metasomatized. Recycling of metasomatic domains into the convecting mantle is fundamental to understanding the generation of small-scale mantle isotopic and volatile heterogeneities sampled by oceanic island and mid-ocean ridge basalts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clinopyroxene composition normalized to primitive mantle for Japanese petit-spot peridotite xenolith compared to abyssal or melt-metasomatized continental peridotites.
Figure 2: Comparison of clinopyroxene xenocrysts composition from Costa Rica petit-spot sills with cpx from lithospheric metasomatic veins.
Figure 3: Schematic model illustrating the metasomatism of the oceanic lithospheric mantle associated to plate flexure.
Figure 4: Forward modelling of metasomatic enrichment of the oceanic lithospheric mantle.

Similar content being viewed by others

References

  1. Johnson, K. T. M., Dick, H. J. B. & Shimizu, N. Melting in the oceanic upper mantle—an ion microprobe study of diopsides in abyssal peridotites. J. Geophys. Res. 95, 2661–2678 (1990).

    Article  Google Scholar 

  2. Hanson, G. N. Geochemical evolution of the suboceanic mantle. J. Geol. Soc. Lond. 134, 235–253 (1977).

    Article  Google Scholar 

  3. Halliday, A. N. et al. Incompatible trace-elements in oib and morb and source enrichment in the sub-oceanic mantle. Earth Planet. Sci. Lett. 133, 379–395 (1995).

    Article  Google Scholar 

  4. Niu, Y. L. & O’Hara, M. J. Origin of ocean island basalts: a new perspective from petrology, geochemistry, and mineral physics considerations. J. Geophys. Res. 108, 2209 (2003).

    Google Scholar 

  5. Griffin, W. L., O’Reilly, S. Y., Afonso, J. C. & Begg, G. C. The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J. Petrol. 50, 1185–1204 (2009).

    Article  Google Scholar 

  6. Seyler, M., Toplis, M. J., Lorand, J. P., Luguet, A. & Cannat, M. Clinopyroxene microtextures reveal incompletely extracted melts in abyssal peridotites. Geology 29, 155–158 (2001).

    Article  Google Scholar 

  7. Warren, J. M. & Shimizu, N. Cryptic variations in abyssal peridotite compositions: evidence for shallow-level melt infiltration in the oceanic lithosphere. J. Petrol. 51, 395–423 (2010).

    Article  Google Scholar 

  8. Dick, H. J. B., Lissenberg, J. C. & Warren, J. M. Mantle melting, melt transport, and delivery beneath a slow-spreading ridge: the paleo-MAR from 23° 15′N to 23° 45′N. J. Petrol. 51, 425–467 (2010).

    Article  Google Scholar 

  9. Muntener, O., Pettke, T., Desmurs, L., Meier, M. & Schaltegger, U. Refertilization of mantle peridotite in embryonic ocean basins: trace element and Nd isotopic evidence and implications for crust-mantle relationships. Earth Planet. Sci. Lett. 221, 293–308 (2004).

    Article  Google Scholar 

  10. Roden, M. K., Hart, S. R., Frey, F. A. & Melson, W. G. Sr, N and Pb isotopic and REE geochemistry of St. Paul’s rocks: the metamorphic and metasomatic development of an alkali basalt mantle source. Contrib. Mineral. Petrol. 85, 376–390 (1984).

    Article  Google Scholar 

  11. Wulff-Pedersen, E., Neumann, E. R., Vannucci, R., Bottazzi, P. & Ottolini, L. Silicic melts produced by reaction between peridotite and infiltrating basaltic melts: ion probe data on glasses and minerals in veined xenoliths from La Palma, Canary Islands. Contrib. Mineral. Petrol. 137, 59–82 (1999).

    Article  Google Scholar 

  12. Bizimis, M. & Peslier, A. H. Water in Hawaiian garnet pyroxenites: implications for water heterogeneity in the mantle. Chem. Geol. 397, 61–75 (2015).

    Article  Google Scholar 

  13. Hirano, N. et al. Volcanism in response to plate flexure. Science 313, 1426–1428 (2006).

    Article  Google Scholar 

  14. Yamamoto, J., Korenaga, J., Hirano, N. & Kagi, H. Melt-rich lithosphere–asthenosphere boundary inferred from petit-spot volcanoes. Geology 42, 967–970 (2014).

    Article  Google Scholar 

  15. Valentine, G. A. & Hirano, N. Mechanisms of low-flux intraplate volcanic fields-Basin and Range (North America) and northwest Pacific Ocean. Geology 38, 55–58 (2010).

    Article  Google Scholar 

  16. Hirano, N., Koppers, A. A. P., Takahashi, A., Fujiwara, T. & Nakanishi, M. Seamounts, knolls and petit spot monogenetic volcanoes on the subducting Pacific Plate. Basin Res. 20, 543–553 (2008).

    Article  Google Scholar 

  17. Hirano, N. et al. Petit-spot lava fields off the central Chile trench induced by plate flexure. Geochem. J. 47, 249–257 (2013).

    Article  Google Scholar 

  18. Taneja, R. et al. 40Ar/39Ar geochronology and the paleoposition of Christmas Island (Australia), Northeast Indian Ocean. Gondwana Res. 28, 391–406 (2015).

    Article  Google Scholar 

  19. Buchs, D. M. et al. Low-volume intraplate volcanism in the Early/Middle Jurassic Pacific basin documented by accreted sequences in Costa Rica. Geochem. Geophys. Geosyst. 14, 1552–1568 (2013).

    Article  Google Scholar 

  20. Kawakatsu, H. et al. Seismic evidence for sharp lithosphere–asthenosphere boundaries of oceanic plates. Science 324, 499–502 (2009).

    Article  Google Scholar 

  21. Stern, T. A. et al. A seismic reflection image for the base of a tectonic plate. Nature 518, 85–88 (2015).

    Article  Google Scholar 

  22. Gregoire, M., Bell, D. R. & Le Roex, A. P. Garnet lherzolites from the Kaapvaal craton (South Africa): trace element evidence for a metasomatic history. J. Petrol. 44, 629–657 (2003).

    Article  Google Scholar 

  23. Bedini, R. M., Bodinier, J. L., Dautria, J. M. & Morten, L. Evolution of LILE-enriched small melt fractions in the lithospheric mantle: a case study from the East African Rift. Earth Planet. Sci. Lett. 153, 67–83 (1997).

    Article  Google Scholar 

  24. Wilshire, H. G. in Mantle Metasomatism and Alkaline Magmatism Vol. 215 (eds Morris, E. M. & Pasteris, J. D.) 47–60 (Geological Society of America Special Paper, 1987).

    Book  Google Scholar 

  25. Harte, B., Hunter, R. H. & Kinny, P. D. Melt geometry, movement and crystallization, in relation to mantle dykes, veins and metasomatism. Phil. Trans. R. Soc. Lond. A 342, 1–21 (1993).

    Article  Google Scholar 

  26. Bonadiman, C., Beccaluva, L., Coltorti, M. & Siena, F. Kimberlite-like metasomatism and ‘Garnet signature’ in spinel-peridotite xenoliths from Sal, Cape Verde archipelago: relics of a subcontinental mantle domain within the Atlantic oceanic lithosphere? J. Petrol. 46, 2465–2493 (2005).

    Article  Google Scholar 

  27. Navon, O. & Stolper, E. Geochemical consequence of melt percolation: the upper mantle as a chromatographic column. J. Geol. 95, 285–307 (1987).

    Google Scholar 

  28. Kodaira, S. et al. Seismological evidence of mantle flow driving plate motions at a palaeo-spreading centre. Nat. Geosci. 7, 371–375 (2014).

    Article  Google Scholar 

  29. Machida, S. et al. Petit-spot geology reveals melts in upper-most asthenosphere dragged by lithosphere. Earth Planet. Sci. Lett. 426, 267–279 (2015).

    Article  Google Scholar 

  30. Gaillard, F., Malki, M., Iacono-Marziano, G., Pichavant, M. & Scaillet, B. Carbonatite melts and electrical conductivity in the asthenosphere. Science 322, 1363–1365 (2008).

    Article  Google Scholar 

  31. Hirschmann, M. M. Partial melt in the oceanic low velocity zone. Phys. Earth Planet. Inter. 179, 60–71 (2010).

    Article  Google Scholar 

  32. Ni, H. W., Keppler, H. & Behrens, H. Electrical conductivity of hydrous basaltic melts: implications for partial melting in the upper mantle. Contrib. Mineral. Petrol. 162, 637–650 (2011).

    Article  Google Scholar 

  33. Katz, R. F., Spiegelman, M. & Holtzman, B. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676–679 (2006).

    Article  Google Scholar 

  34. Kohlstedt, D. L. & Holtzman, B. K. Shearing melt out of the Earth: an experimentalist’s perspective on the influence of deformation on melt extraction. Annu. Rev. Earth Planet. Sci. 37, 561–593 (2009).

    Article  Google Scholar 

  35. Holtzman, B. K. Questions on the existence, persistence, and mechanical effects of a very small melt fraction in the asthenosphere. Geochem. Geophys. Geosyst. 17, 470–484 (2016).

    Article  Google Scholar 

  36. Pec, M., Holtzman, B. K., Zimmerman, M. & Kohlstedt, D. L. Reaction infiltration instabilities in experiments on partially molten mantle rocks. Geology 43, 575–578 (2015).

    Article  Google Scholar 

  37. Vernieres, J., Godard, M. & Bodinier, J. L. A plate model for the simulation of trace element fractionation during partial melting and magma transport in the Earth’s upper mantle. J. Geophys. Res. 102, 24771–24784 (1997).

    Article  Google Scholar 

  38. Pilet, S., Baker, M. B., Muntener, O. & Stolper, E. M. Monte Carlo simulations of metasomatic enrichment in the lithosphere and implications for the source of alkaline basalts. J. Petrol. 52, 1415–1442 (2011).

    Article  Google Scholar 

  39. Yang, X. Z. & McCammon, C. Fe3+-rich augite and high electrical conductivity in the deep lithosphere. Geology 40, 131–134 (2012).

    Article  Google Scholar 

  40. Rader, E. et al. Characterization and petrological constraints of the midlithospheric discontinuity. Geochem. Geophys. Geosyst. 16, 3484–3504 (2015).

    Article  Google Scholar 

  41. Selway, K., Ford, H. & Kelemen, P. The seismic mid-lithosphere discontinuity. Earth Planet. Sci. Lett. 414, 45–57 (2015).

    Article  Google Scholar 

  42. Pilet, S., Hernandez, J., Sylvester, P. & Poujol, M. The metasomatic alternative for ocean island basalt chemical heterogeneity. Earth Planet. Sci. Lett. 236, 148–166 (2005).

    Article  Google Scholar 

  43. Watts, A. B. & Talwani, M. Gravity anomalies seaward of deep-sea trenches and their tectonic implications. Geophys. J. R. Astron. Soc. 36, 57–90 (1974).

    Article  Google Scholar 

  44. McDonough, W. F. & Sun, S. S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article  Google Scholar 

  45. Armstrong, J. T. in Microbeam Analysis (ed. Newbury, D. E.) 239–246 (San Francisco Press, 1988).

    Google Scholar 

  46. Longerich, H. P., Jackson, S. E. & Gunther, D. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J. Anal. At. Spectrom. 11, 899–904 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

This work benefited from discussions with M. M. Baker, D. Rubatto and J. van Wijk. This work is supported by the Swiss National Science Foundation, grant 200021_140494 (S.P.), by the Toray Science Foundation, by the Toray science and technology grant #11–5208 (N.H.), and by JSPS KAKENHI grant 20340124 (N.A.). We thank the crews for their help during the KR04–08 and YK05–06 cruises.

Author information

Authors and Affiliations

Authors

Contributions

S.P. and N.A. designed the study. Petit-spot samples from Japan and Costa Rica were collected by N.H., N.A. and S.M., and by D.M.B., P.O.B., L.R. and S.P., respectively. L.R., S.P. and N.A. performed the EMPA and LA-ICP-MS measurements. M.-A.K. and S.P. conducted the porous and focused flow numerical simulations. All authors discussed the results and their implications. S.P., L.R., O.M., M.-A.K. and D.M.B. wrote the text. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to S. Pilet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2387 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilet, S., Abe, N., Rochat, L. et al. Pre-subduction metasomatic enrichment of the oceanic lithosphere induced by plate flexure. Nature Geosci 9, 898–903 (2016). https://doi.org/10.1038/ngeo2825

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2825

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing