Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Explosive eruptions at mid-ocean ridges driven by CO2-rich magmas

Abstract

The abundance of volatile compounds, and particularly CO2, in the upper oceanic mantle affects the style of volcanic eruptions. At mid-ocean ridges, eruptions are generally dominated by the gentle effusion of basaltic lavas with a low volatile content. However explosive volcanism has been documented at some ocean spreading centres1,2,3, indicative of abundant volatile compounds. Estimates of the initial CO2 concentration of primary magmas can be used to constrain the CO2 content of the upper oceanic mantle, but these estimates vary greatly4,5. Here we present ion microprobe measurements of the CO2 content of basaltic melt trapped in plagioclase crystals. The crystals are derived from volcanic ash deposits erupted explosively at Axial Seamount, Juan de Fuca Ridge, in the northeast Pacific Ocean. We report unusually high CO2 concentrations of up to 9,160 ppm, which indicate that the upper oceanic mantle is more enriched in carbon than previously thought. We furthermore suggest that CO2 fluxes along mid-ocean ridges4,5 vary significantly. Our results demonstrate that elevated fluxes of CO2 from the upper oceanic mantle can drive explosive eruptions at mid-ocean ridges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dissolved CO2 and H2O contents in melt inclusions and host glasses, measured by secondary-ion mass spectrometry (SIMS).
Figure 2: H2O, F, and Cl contents of the melt inclusions and host glasses.
Figure 3: Bilogarithmic plot of CO2/Nb versus CO2.

Similar content being viewed by others

References

  1. Clague, D. A., Davis, A. S. & Dixon, J. E. in Explosive Subaqueous Volcanism (eds White, J. D. L. & Clague, Smellie) (American Geophysical Union, 2003).

    Google Scholar 

  2. Clague, D. A., Paduan, J. B. & Davis, A. S. Widespread strombolian eruptions of mid-ocean ridge basalt. J. Volcanol. Geotherm. Res. 180, 171–188 (2009).

    Article  Google Scholar 

  3. Sohn, R. A. et al. Explosive volcanism on the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature 453, 1236–1238 (2008).

    Article  Google Scholar 

  4. Saal, A. E., Hauri, E. H., Langmuir, C. H. & Perfit, M. R. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419, 451–455 (2002).

    Article  Google Scholar 

  5. Cartigny, P., Pineau, F., Aubaud, C. & Javoy, M. Towards a consistent mantle carbon flux estimate: Insights from volatile systematics (H2O/Ce, δD, CO2/Nb) in the North Atlantic mantle (14° N and 34° N). Earth Planet. Sci. Lett. 265, 672–685 (2008).

    Article  Google Scholar 

  6. Davis, A. S. & Clague, D. A. in Explosive Subaqueous Volcanism (eds White, J. D. L., Smellie, J. L. & Clague, D. A.) (American Geophysical Union, 2003).

    Google Scholar 

  7. Clague, D. A., Davis, A. S., Bischoff, J. L., Dixon, J. E. & Geyer, R. Lava bubble-wall fragments formed by submarine hydrovolcanic: Explosions on Lo’ihi Seamount and Kilauea Volcano. Bull. Volcanol. 61, 437–449 (2000).

    Article  Google Scholar 

  8. Maicher, D. & White, J. D. L. The formation of deep-sea Limu o Pele. Bull. Volcanol. 63, 482–496 (2001).

    Article  Google Scholar 

  9. Dixon, J. E. & Stolper, E. M. An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. 2. Applications to degassing. J. Petrol. 36, 1633–1646 (1995).

    Google Scholar 

  10. Javoy, M. & Pineau, F. The volatiles record of a ‘popping rock’ from the Mid-Atlantic Ridge at 14° N: Chemical and isotopic composition of gas trapped in the vesicles. Earth Planet. Sci. Lett. 107, 598–611 (1991).

    Article  Google Scholar 

  11. West, M., Menke, W., Tolstoy, M., Webb, S. & Sohn, R. Magma storage beneath Axial volcano on the Juan de Fuca mid-ocean ridge. Nature 413, 833–836 (2001).

    Article  Google Scholar 

  12. PetDB. Petrological Database of the Ocean Floor, http://www.petdb.org.

  13. Newman, S. & Lowenstern, J. B. VOLATILECALC: A silicate melt-H2O–CO2 solution model written in Visual Basic for Excel. Comput. Geosci. 28, 597–604 (2002).

    Article  Google Scholar 

  14. Gerlach, T. M. Comment on ‘Mid-ocean ridge popping rocks: Implications for degassing at ridge crests’ by P. Sarda and D. Graham. Earth Planet. Sci. Lett. 105, 566–567 (1991).

    Article  Google Scholar 

  15. Hekinian, R. et al. Deep sea explosive activity on the Mid-Atlantic Ridge near 34°50′ N: Magma composition, vesicularity and volatile content. J. Volcanol. Geotherm. Res. 98, 49–77 (2000).

    Article  Google Scholar 

  16. Shaw, A. M., Behn, M. D., Humphris, S. E., Sohn, R. A. & Gregg, P. M. Deep pooling of low degree melts and volatile fluxes at the 85° E segment of the Gakkel Ridge: Evidence from olivine-hosted melt inclusions and glasses. Earth Planet. Sci. Lett. 289, 311–322 (2010).

    Article  Google Scholar 

  17. Gilbert, L. A., McDuff, R. E. & Johnson, H. P. Porosity of the upper edifice of Axial Seamount. Geology 35, 49–52 (2007).

    Article  Google Scholar 

  18. Grove, L. T., Kinzler, R. J. & Bryan, W. B. in Mantle Flow and Melt Generation at Mid-Ocean Ridges (eds Morgan, J. P., Blackman, D. K. & Sinton, J. M.) (American Geophysical Union, 1992).

    Google Scholar 

  19. Nielsen, R. L. et al. Melt inclusions in high-An plagioclase from the Gorda Ridge: An example of the local diversity of MORB parent magmas. Contrib. Mineral. Petrol. 122, 34–50 (1995).

    Article  Google Scholar 

  20. Bottinga, Y. & Javoy, M. Midocean ridge basalt degassing—bubble nucleation. J. Geophys. Res. 95, 5125–5131 (1990).

    Article  Google Scholar 

  21. Head, J. W. & Wilson, L. Deep submarine pyroclastic eruptions: Theory and predicted landforms and deposits. J. Volcanol. Geotherm. Res. 121, 155–193 (2003).

    Article  Google Scholar 

  22. Jaupart, C. & Vergniolle, S. The generation and collapse of foam layer at the roof of a basaltic magma chamber. J. Fluid. Mech. 203, 347–380 (1989).

    Article  Google Scholar 

  23. Hofmann, A. W. Chemical differentiation of the earth—the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 90, 297–314 (1988).

    Article  Google Scholar 

  24. West, M., Menke, W. & Tolstoy, M. Focused magma supply at the intersection of the Cobb hotspot and the Juan de Fuca ridge. Geophys. Res. Lett. 30, 1724 (2003).

    Article  Google Scholar 

  25. Cogné, J. P. & Humler, E. Trends and rhythms in global seafloor generation rate. Geochem. Geophys. Geosyst. 7, Q03011 (2006).

    Article  Google Scholar 

  26. Shimizu, K. et al. CO2-rich komatiitic melt inclusions in Cr-spinels within beach sand from Gorgona Island, Colombia. Earth Planet. Sci. Lett. 288, 33–43 (2009).

    Article  Google Scholar 

  27. Dixon, J. E. & Clague, D. A. Volatiles in basaltic glasses from Loihi Seamount, Hawaii: Evidence for a relatively dry plume component. J. Petrol. 42, 627–654 (2001).

    Article  Google Scholar 

  28. Hauri, E. et al. SIMS analysis of volatiles in silicate glasses 1. Calibration, matrix effects and comparisons with FTIR. Chem. Geol. 183, 99–114 (2002).

    Article  Google Scholar 

  29. Fine, G. & Stolper, E. Dissolved carbon dioxide in basaltic glasses: Concentrations and speciation. Earth Planet. Sci. Lett. 76, 263–278 (1986).

    Article  Google Scholar 

  30. Shimizu, N. & Hart, S. R. Applications of the ion-micro-probe to geochemistry and cosmochemistry. Annu. Rev. Earth Planet. Sci. 10, 483–526 (1982).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Captain and crew of the RV Western Flyer and the pilots of the ROV Tiburon for their support and expertise during the 2006 MBARI Vance Expedition. The expedition and D.A.C. were supported through a grant to MBARI from the David and Lucile Packard Foundation. C.H. was supported by R. H. Tomlinson, GEOTOP and J. W. McConnell Memorial Fellowships at McGill University. J.S. was supported by grants from the Natural Sciences and Engineering Research Council of Canada. We thank B. Watson from the Rensselaer Polytechnic Institute for synthesising the high-CO2 glass standard NS-1, and C. Mandeville from the American Museum of Natural History for the FTIR determination of CO2 content of this standard.

Author information

Authors and Affiliations

Authors

Contributions

C.H. performed volatile analysis and major element analysis of the melt inclusions and host glasses, and analysed the data. M-A.L. performed the trace element analysis of the melt inclusions, N.S. supervised the volatile and trace element analysis, D.A.C. was responsible for the organization of the cruise and sample collection, and J.S. supervised the work. The manuscript was written primarily by C.H., with contributions from M-A.L., N.S., D.A.C. and J.S.

Corresponding author

Correspondence to Christoph Helo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1045 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helo, C., Longpré, MA., Shimizu, N. et al. Explosive eruptions at mid-ocean ridges driven by CO2-rich magmas. Nature Geosci 4, 260–263 (2011). https://doi.org/10.1038/ngeo1104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1104

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing