Research Briefing

Filter By:

Article Type
  • In a part of the Apennines, where the Earth’s crust is thin and heat flow is high, production of CO2 from deep below the mountains dominates over near-surface weathering processes that consume this greenhouse gas. Ultimately, the magnitude of deep CO2 release tips the balance towards a landscape that is a net carbon emitter.

    Research Briefing
  • Aerosol–cloud interactions are the largest uncertainty in radiative forcing. We combined machine learning and long-term satellite observations to quantify aerosol fingerprints on tropical marine clouds, using degassing volcanic events in Hawaii as natural experiences, and found that cloud cover increased relatively by 50% in humid and stable atmosphere, leading to strong cooling radiative forcing.

    Research Briefing
  • There are no good models for the chemical evolution of the Earth’s surface over the planet’s lifetime, because models typically overlook the progressive build-up of carbonate rocks in the crust. A new model that includes this accumulation enables the reconstruction of major oxygen and temperature trends throughout Earth’s history.

    Research Briefing
  • The carbon emissions of large igneous province magmatism are commonly associated with severe environmental crises. We developed a technique that used sedimentary mercury records to estimate these carbon fluxes through time and found that they are smaller and/or slower than assumed, which suggests that the influence of carbon-cycle feedback processes is underestimated in current models.

    Research Briefing
  • Earthquakes not only affect tree growth directly by causing physical injury to individual trees but also indirectly by inducing changes in forest habitats. We established linkage between tree-ring series and seismic disturbances and found that prominent and lasting seismic legacies in drier areas may be due to an increased infiltration of precipitation through earthquake-induced soil cracks.

    Research Briefing
  • Analysis of sea temperatures using a four-dimensional spatio-temporal framework has revealed a great number of marine heatwaves occurring globally below the sea surface. These extreme events, which threaten the ecologically important epipelagic zone, have occurred increasingly frequently during the past three decades owing to ocean warming.

    Research Briefing
  • H2, which is formed by the oxidation of iron in rocks, was likely a critical source of energy for early life. Analysis of natural rock samples from 3.5–2.7 billion-year-old komatiites, combined with geochemical data from a global database, quantifies the amount of H2 likely to have been produced in Earth’s ancient oceans.

    Research Briefing
  • Accurate estimates of the land carbon sink are vital for informing climate projections and net-zero policies. Application of a strict filtering method to microwave satellite data enabled the evaluation of global vegetation biomass carbon dynamics for 2010–2019. The results highlight the role of demography in driving forest carbon gains and losses.

    Research Briefing
  • There are two competing hypotheses for the origin of oceanic plateaus: plume versus plate. Thermodynamic modelling of magmatism at Shatsky Rise, in the Pacific Ocean, now suggests that neither mechanism is adequate on its own and in fact plume–ridge interaction is required to explain the formation of this ocean plateau.

    Research Briefing
  • Phosphorus from intensive agriculture contributes to increased algal blooms, threatening ecosystems and drinking water sources. We found increasing dissolved phosphorus concentrations in more than 170 Great Lakes Basin streams, despite stable or decreasing total phosphorus levels. Higher latitudes experienced greater relative increases, potentially due to warmer winters and altered flow pathways.

    Research Briefing
  • Glacier ice contains high-pressure air bubbles, which burst into seawater as ice melts at tidewater glacier termini. Laboratory measurements found that these bubbles double the rate of ice melt. Theoretically, this effect could be even larger in a real glacier. However, bursting bubbles are currently neglected in models projecting sea level rise.

    Research Briefing
  • There is a large discrepancy between estimates of oceanic plastic input and the amount of plastic measured floating at the ocean surface. Model results show that this can be explained by large objects being underestimated in previous mass budget analyses, combined with lower input estimates.

    Research Briefing
  • Analysis of the microfossil content of sediment cores from areas where thick Arctic sea ice persists today reveals that a subpolar species associated with Atlantic water expanded deep into the Arctic Ocean during the Last Interglacial. This finding implies that summers in the Arctic were likely sea-ice-free during this period.

    Research Briefing