Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetic choreographers of neurogenesis in the adult mammalian brain

Abstract

Epigenetic mechanisms regulate cell differentiation during embryonic development and also serve as important interfaces between genes and the environment in adulthood. Neurogenesis in adults, which generates functional neural cell types from adult neural stem cells, is dynamically regulated by both intrinsic state-specific cell differentiation cues and extrinsic neural niche signals. Epigenetic regulation by DNA and histone modifiers, non-coding RNAs and other self-sustained mechanisms can lead to relatively long-lasting biological effects and maintain functional neurogenesis throughout life in discrete regions of the mammalian brain. Here, we review recent evidence that epigenetic mechanisms carry out diverse roles in regulating specific aspects of adult neurogenesis and highlight the implications of such epigenetic regulation for neural plasticity and disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic modes of epigenetic regulation implicated in adult neurogenesis.
Figure 2: Classic and emerging technologies for epigenetic analysis of adult neurogenesis.
Figure 3: Major epigenetic regulators of adult neurogenesis.

Similar content being viewed by others

References

  1. Cameron, H.A. & McKay, R.D. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J. Comp. Neurol. 435, 406–417 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Altman, J. & Das, G.D. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 124, 319–335 (1965).

    Article  CAS  PubMed  Google Scholar 

  3. Gage, F.H. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Alvarez-Buylla, A. & Lim, D.A. For the long run: maintaining germinal niches in the adult brain. Neuron 41, 683–686 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Ming, G.L. & Song, H. Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci. 28, 223–250 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Lledo, P.M., Alonso, M. & Grubb, M.S. Adult neurogenesis and functional plasticity in neuronal circuits. Nat. Rev. Neurosci. 7, 179–193 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Zhao, C., Deng, W. & Gage, F.H. Mechanisms and functional implications of adult neurogenesis. Cell 132, 645–660 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Ma, D.K., Bonaguidi, M.A., Ming, G.L. & Song, H. Adult neural stem cells in the mammalian central nervous system. Cell Res. 19, 672–682 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Duan, X., Kang, E., Liu, C.Y., Ming, G.L. & Song, H. Development of neural stem cell in the adult brain. Curr. Opin. Neurobiol. 18, 108–115 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kempermann, G., Wiskott, L. & Gage, F.H. Functional significance of adult neurogenesis. Curr. Opin. Neurobiol. 14, 186–191 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Deng, W., Aimone, J.B. & Gage, F.H. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat. Rev. Neurosci. 11, 339–350 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kitabatake, Y., Sailor, K.A., Ming, G.L. & Song, H. Adult neurogenesis and hippocampal memory function: new cells, more plasticity, new memories? Neurosurg. Clin. N. Am. 18, 105–113 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Holliday, R. Mechanisms for the control of gene activity during development. Biol. Rev. Camb. Philos. Soc. 65, 431–471 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Goldberg, A.D., Allis, C.D. & Bernstein, E. Epigenetics: a landscape takes shape. Cell 128, 635–638 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Waddington, C.H. Principles of Development and Differentiation (Macmillan, New York, 1966).

  16. Holliday, R. Epigenetics: a historical overview. Epigenetics 1, 76–80 (2006).

    Article  PubMed  Google Scholar 

  17. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33 Suppl., 245–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, T.Y. & Meaney, M.J. Epigenetics and the environmental regulation of the genome and its function. Annu. Rev. Psychol. 61, 439–466 (2010).

    Article  PubMed  Google Scholar 

  19. Covic, M., Karaca, E. & Lie, D.C. Epigenetic regulation of neurogenesis in the adult hippocampus. Heredity 105, 122–134 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Hsieh, J. & Eisch, A.J. Epigenetics, hippocampal neurogenesis and neuropsychiatric disorders: unraveling the genome to understand the mind. Neurobiol. Dis. 39, 73–84 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ma, D.K., Kim, W.R., Ming, G.L. & Song, H. Activity-dependent extrinsic regulation of adult olfactory bulb and hippocampal neurogenesis. Ann. NY Acad. Sci. 1170, 664–673 (2009).

    Article  PubMed  Google Scholar 

  22. Cedar, H. & Bergman, Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Holliday, R. Epigenetic inheritance based on DNA methylation. EXS 64, 452–468 (1993).

    CAS  PubMed  Google Scholar 

  24. Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ito, S. et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466, 1129–1133 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Serio, T.R. & Lindquist, S.L. Protein-only inheritance in yeast: something to get [PSI+]-ched about. Trends Cell Biol. 10, 98–105 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Ptashne, M. On the use of the word 'epigenetic'. Curr. Biol. 17, R233–R236 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Capela, A. & Temple, S. LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron 35, 865–875 (2002).

    Article  PubMed  Google Scholar 

  31. Pastrana, E., Cheng, L.C. & Doetsch, F. Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. Proc. Natl. Acad. Sci. USA 106, 6387–6392 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kanki, H., Shimabukuro, M.K., Miyawaki, A. & Okano, H. “Color Timer” mice: visualization of neuronal differentiation with fluorescent proteins. Mol. Brain 2, 3 (2010).

    Google Scholar 

  33. Encinas, J.M. & Enikolopov, G. Identifying and quantitating neural stem and progenitor cells in the adult brain. Methods Cell Biol. 85, 243–272 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Heiman, M. et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–748 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Goren, A. et al. Chromatin profiling by directly sequencing small quantities of immunoprecipitated DNA. Nat. Methods 7, 47–49 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. O'Neill, L.P., VerMilyea, M.D. & Turner, B.M. Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat. Genet. 38, 835–841 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Ball, M.P. et al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat. Biotechnol. 27, 361–368 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bernstein, B.E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Roh, T.Y., Ngau, W.C., Cui, K., Landsman, D. & Zhao, K. High-resolution genome-wide mapping of histone modifications. Nat. Biotechnol. 22, 1013–1016 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Jin, S.G., Kadam, S. & Pfeifer, G.P. Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res. 38, e125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Molofsky, A.V. et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425, 962–967 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ringrose, L. & Paro, R. Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 134, 223–232 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Ng, R.K. & Gurdon, J.B. Epigenetic inheritance of cell differentiation status. Cell Cycle 7, 1173–1177 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Fasano, C.A. et al. Bmi-1 cooperates with Foxg1 to maintain neural stem cell self-renewal in the forebrain. Genes Dev. 23, 561–574 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fasano, C.A. et al. shRNA knockdown of Bmi-1 reveals a critical role for p21-Rb pathway in NSC self-renewal during development. Cell Stem Cell 1, 87–99 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. He, S. et al. Bmi-1 over-expression in neural stem/progenitor cells increases proliferation and neurogenesis in culture but has little effect on these functions in vivo. Dev. Biol. 328, 257–272 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhao, X. et al. Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc. Natl. Acad. Sci. USA 100, 6777–6782 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Martín Caballero, I., Hansen, J., Leaford, D., Pollard, S. & Hendrich, B.D. The methyl-CpG binding proteins Mecp2, Mbd2 and Kaiso are dispensable for mouse embryogenesis, but play a redundant function in neural differentiation. PLoS ONE 4, e4315 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, X. et al. Epigenetic regulation of the stem cell mitogen Fgf-2 by Mbd1 in adult neural stem/progenitor cells. J. Biol. Chem. 283, 27644–27652 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Episkopou, V. SOX2 functions in adult neural stem cells. Trends Neurosci. 28, 219–221 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Suh, H. et al. In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippoampus. Cell Stem Cell 1, 515–528 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Boyer, L.A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jaenisch, R. & Young, R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567–582 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hu, Q. et al. The EGF receptor-sox2-EGF receptor feedback loop positively regulates the self-renewal of neural precursor cells. Stem Cells 28, 279–286 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Lim, D.A. et al. Chromatin remodeling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature 458, 529–533 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jepsen, K. et al. SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature 450, 415–419 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Hsieh, J., Nakashima, K., Kuwabara, T., Mejia, E. & Gage, F.H. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc. Natl. Acad. Sci. USA 101, 16659–16664 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sun, G., Yu, R.T., Evans, R.M. & Shi, Y. Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation. Proc. Natl. Acad. Sci. USA 104, 15282–15287 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Jawerka, M. et al. The specific role of histone deacetylase 2 in adult neurogenesis. Neuron Glia Biol. published online, doi:10.1017/S1740925X10000049 (14 April 2010).

  61. Crepaldi, L. & Riccio, A. Chromatin learns to behave. Epigenetics 4, 23–26 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Zocchi, L. & Sassone-Corsi, P. Joining the dots: from chromatin remodeling to neuronal plasticity. Curr. Opin. Neurobiol. 20, 432–440 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, Z. et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138, 1019–1031 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Morris, K.V. Non-coding RNAs, epigenetic memory and the passage of information to progeny. RNA Biol. 6, 242–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Hobert, O. Gene regulation by transcription factors and microRNAs. Science 319, 1785–1786 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Iorio, M.V., Piovan, C. & Croce, C.M. Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim. Biophys. Acta published online, doi:10.1016/j.bbagrm.2010.05.005 (20 May 2010).

  67. Liu, C. et al. Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell 6, 433–444 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Szulwach, K.E. et al. Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J. Cell Biol. 189, 127–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Smrt, R.D. et al. MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells 28, 1060–1070 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cheng, L.C., Pastrana, E., Tavazoie, M. & Doetsch, F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat. Neurosci. 12, 399–408 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kuwabara, T., Hsieh, J., Nakashima, K., Taira, K. & Gage, F.H. A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 116, 779–793 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Juliandi, B., Abematsu, M. & Nakashima, K. Chromatin remodeling in neural stem cell differentiation. Curr. Opin. Neurobiol. 20, 408–415 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Yoo, A.S., Staahl, B.T., Chen, L. & Crabtree, G.R. MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 460, 642–646 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Coufal, N.G. et al. L1 retrotransposition in human neural progenitor cells. Nature 460, 1127–1131 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Muotri, A.R. et al. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435, 903–910 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Muotri, A.R. & Gage, F.H. Generation of neuronal variability and complexity. Nature 441, 1087–1093 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Kuwabara, T. et al. Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat. Neurosci. 12, 1097–1105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Muotri, A.R., Zhao, C., Marchetto, M.C. & Gage, F.H. Environmental influence on L1 retrotransposons in the adult hippocampus. Hippocampus 19, 1002–1007 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ma, D.K., Ming, G.L. & Song, H. Glial influences on neural stem cell development: cellular niches for adult neurogenesis. Curr. Opin. Neurobiol. 15, 514–520 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Ma, D.K. et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323, 1074–1077 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ma, D.K., Guo, J.U., Ming, G.L. & Song, H. DNA excision repair proteins and Gadd45 as molecular players for active DNA demethylation. Cell Cycle 8, 1526–1531 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Martinowich, K. et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302, 890–893 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Zhou, Z. et al. Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth and spine maturation. Neuron 52, 255–269 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. He, D.Y., Neasta, J. & Ron, D. Epigenetic regulation of BDNF expression via the scaffolding protein rack1. J. Biol. Chem. 285, 19043–19050 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Smrt, R.D. et al. Mecp2 deficiency leads to delayed maturation and altered gene expression in hippocampal neurons. Neurobiol. Dis. 27, 77–89 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Feng, J. et al. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat. Neurosci. 13, 423–430 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Qiu, Z. & Ghosh, A. A calcium-dependent switch in a CREST-BRG1 complex regulates activity-dependent gene expression. Neuron 60, 775–787 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mu, Y., Lee, S.W. & Gage, F.H. Signaling in adult neurogenesis. Curr. Opin. Neurobiol. 20, 416–423 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dirks, P. Bmi1 and cell of origin determinants of brain tumor phenotype. Cancer Cell 12, 295–297 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Nagarajan, R.P. & Costello, J.F. Epigenetic mechanisms in glioblastoma multiforme. Semin. Cancer Biol. 19, 188–197 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Banasr, M. & Duman, R.S. Regulation of neurogenesis and gliogenesis by stress and antidepressant treatment. CNS Neurol. Disord. Drug Targets 6, 311–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Sahay, A. & Hen, R. Adult hippocampal neurogenesis in depression. Nat. Neurosci. 10, 1110–1115 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Allan, A.M. et al. The loss of methyl-CpG binding protein 1 leads to autism-like behavioral deficits. Hum. Mol. Genet. 17, 2047–2057 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li, Y. et al. TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron 59, 399–412 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Roth, T.L. & Sweatt, J.D. Epigenetic marking of the BDNF gene by early-life adverse experiences. Horm. Behav. published online, doi:10.1016/j.yhbeh.2010.05.005 (17 May 2010).

  96. Kuzumaki, N. et al. Hippocampal epigenetic modification at the brain-derived neurotrophic factor gene induced by an enriched environment. Hippocampus published online, doi:10.1002/hipo.20775 (15 March 2010).

  97. Nelson, E.D., Kavalali, E.T. & Monteggia, L.M. Activity-dependent suppression of miniature neurotransmission through the regulation of DNA methylation. J. Neurosci. 28, 395–406 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bath, K.G. et al. Variant brain-derived neurotrophic factor (Val66Met) alters adult olfactory bulb neurogenesis and spontaneous olfactory discrimination. J. Neurosci. 28, 2383–2393 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen, Z.Y. et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 314, 140–143 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Christian, K., Song, H. & Ming, G.L. Adult neurogenesis as a cellular model to study schizophrenia. Cell Cycle 9, 636–637 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M.L. Gage and K. Christian for comments on the manuscript and J. Simon for illustrations. This work was supported by the National Institutes of Health grants NS048271 and HD069184 (G.-l.M.), MH088485 and MH090258 (F.H.G.), and AG024984, NS047344 and MH087874 (H.S.), the Brain Science Institute at Johns Hopkins and National Alliance for Research on Schizophrenia and Depression (G.-l.M.), the Mathers Foundation, the Lookout Fund and the J.S. McDonnell Foundation (F.H.G.), a Helen Hay Whitney Foundation postdoctoral fellowship (D.K.M.), and the Dr. Richard and Mavis Fowler and the Foundation for Advanced Research in the Medical Sciences Fellowship (J.U.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Song.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, D., Marchetto, M., Guo, J. et al. Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci 13, 1338–1344 (2010). https://doi.org/10.1038/nn.2672

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2672

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing