Articles in 2016

Filter By:

Article Type
Year
  • Active neurons increase their energy supply by dilating nearby arterioles and capillaries to increase blood flow, but the mechanisms underlying neurovascular coupling are debated. In this paper, the authors show that different calcium-dependent signaling pathways regulate blood flow at the level of capillary pericytes and arteriole smooth muscle.

    • Anusha Mishra
    • James P Reynolds
    • David Attwell
    Article
  • The authors identify two genetic markers defining non-overlapping populations of principal cells in the amygdala that respond to stimuli of opposite valence. These two populations of cells contribute to behavioral responses to aversive or rewarding experiences, are distributed along antero-posterior gradients that run in opposite directions, and synaptically suppress each other.

    • Joshua Kim
    • Michele Pignatelli
    • Susumu Tonegawa
    Article
  • Sleep rearranges the firing patterns of excitatory projection neurons in zebra finch songbirds. Patterned inhibition is implicated in maintaining stable songs in spite of the instability in the projection neuron population.

    • William A Liberti III
    • Jeffrey E Markowitz
    • Timothy J Gardner
    Article
  • In this study, Sivadasan et al. show that the interactome of the C9ORF72 protein contains cofilin and other actin-binding proteins. They also demonstrate that actin dynamics are reduced in patient-derived motor neurons and tissues with ALS-related intronic expansion of the C9ORF72 gene, leading to altered axon growth and growth cone dynamics.

    • Rajeeve Sivadasan
    • Daniel Hornburg
    • Michael Sendtner
    Article
  • Resting-state functional connectivity has helped reveal the brain's network organization, yet its relevance to cognitive task activations has been unclear. The authors found that estimating activity flow over resting-state networks allows prediction of held-out activations, suggesting activity flow as a linking mechanism between resting-state networks and cognitive task activations.

    • Michael W Cole
    • Takuya Ito
    • Douglas H Schultz
    Article
  • In a GWAS study of 32,438 adults, the authors discovered five novel loci for intracranial volume and confirmed two known signals. Variants for intracranial volume were also related to childhood and adult cognitive function and to Parkinson's disease, and enriched near genes involved in growth pathways, including PI3K-AKT signaling.

    • Hieab H H Adams
    • Derrek P Hibar
    • Paul M Thompson
    Article
  • The biological mechanisms underlying memory are complex and typically involve multiple molecular processes operating on timescales ranging from fractions of a second to years. The authors show using a mathematical model of synaptic plasticity and consolidation that this complexity can help explain the formidable memory capacity of biological systems.

    • Marcus K Benna
    • Stefano Fusi
    Article
  • The authors developed experimental and computational approaches to study moment-to-moment changes in the activity of populations of cortical neurons as mice accumulated evidence during decision-making in virtual reality. They propose that evidence accumulation may not require winner-take-all competitions but instead emerges from general dynamical properties that instantiate short-term memory.

    • Ari S Morcos
    • Christopher D Harvey
    Article
  • De novo mutations in CHD8 are associated with autism spectrum disorder, but the basic biology of CHD8 remains poorly understood. Here the authors find that Chd8 knockdown during cortical development results in defective neural progenitor proliferation and differentiation that ultimately manifests in abnormal neuronal morphology and behaviors in adult mice.

    • Omer Durak
    • Fan Gao
    • Li-Huei Tsai
    Article
  • Using whole-exome sequencing, the authors identified 244,246 coding-sequence and splice-site ultra-rare variants (URVs) and found that gene-disruptive and putatively protein-damaging URVs were significantly more abundant in schizophrenia cases than in controls. The excess of protein-compromising URVs was concentrated in brain-specific genes, particularly in neuronally expressed genes whose proteins are located at the synapse.

    • Giulio Genovese
    • Menachem Fromer
    • Steven A McCarroll
    Article
  • The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of subjects with schizophrenia (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, they found that ∼20% of schizophrenia loci have variants that may contribute to altered gene expression and liability.

    • Menachem Fromer
    • Panos Roussos
    • Pamela Sklar
    Article
  • The ability to estimate environmental state under limited sensory observation is essential for many behaviors and can be realized using dynamic Bayesian inference. The authors use in vivo two-photon calcium imaging and probabilistic population decoding to show that cortical neurons implement prediction and updating, the fundamental features of dynamic Bayesian inference.

    • Akihiro Funamizu
    • Bernd Kuhn
    • Kenji Doya
    Article
  • AgRP neurons of the arcuate nucleus of the hypothalamus promote homeostatic feeding yet are rapidly suppressed by food-related sensory cues. The authors identify a population of inhibitory DMH-LepR neurons that relays real-time information about the nature and availability of food to dynamically modulate ARC-AgRP neuron activity and feeding behavior.

    • Alastair S Garfield
    • Bhavik P Shah
    • Bradford B Lowell
    Article
  • Much of what is known about nervous system development is based on chemical signaling. In this study, Koser et al. demonstrate that developing neurons also respond to mechanical signals and that local tissue stiffness is a regulator of neuronal growth in vivo.

    • David E Koser
    • Amelia J Thompson
    • Kristian Franze
    Article
  • The authors find that activity in rodent visual cortex can depend on the animal's location in a virtual environment and can predict upcoming visual stimuli. Omitting a stimulus that a mouse expects to see results in a strong mismatch signal, implying that visual cortex compares visual signals to expectations in familiar environments.

    • Aris Fiser
    • David Mahringer
    • Georg B Keller
    Article
  • The authors demonstrate that attention slowly fluctuates at a rhythm that resembles resting-state oscillations. During periods of attention, the brain aligns its neuronal oscillations and the cortical operations they orchestrate to the timing of external stimuli, while attentional lapses are characterized by operations aligned to internally timed alpha oscillations.

    • Peter Lakatos
    • Annamaria Barczak
    • Monica Noelle O'Connell
    Article