Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The intrinsic and extrinsic effects of N-linked glycans on glycoproteostasis

Abstract

Proteins that traffic through the eukaryotic secretory pathway are commonly modified with N-linked carbohydrates. These bulky amphipathic modifications at asparagines intrinsically enhance solubility and folding energetics through carbohydrate-protein interactions. N-linked glycans can also extrinsically enhance glycoprotein folding by using the glycoprotein homeostasis or 'glycoproteostasis' network, which comprises numerous glycan binding and/or modification enzymes or proteins that synthesize, transfer, sculpt and use N-linked glycans to direct folding and trafficking versus degradation and trafficking of nascent N-glycoproteins through the cellular secretory pathway. If protein maturation is perturbed by misfolding, aggregation or both, stress pathways are often activated that result in transcriptional remodeling of the secretory pathway in an attempt to alleviate the insult (or insults). The inability to achieve glycoproteostasis is linked to several pathologies, including amyloidoses, cystic fibrosis and lysosomal storage diseases. Recent progress on genetic and pharmacologic adaptation of the glycoproteostasis network provides hope that drugs of this mechanistic class can be developed for these maladies in the near future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The initial composition of an N-linked glycan.
Figure 2: Intrinsic effects of N-glycosylation on protein folding.
Figure 3: N-linked glycans as protein sorting tags.
Figure 4: Calnexin post-translational modifications modulate ER localization.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kim, Y.E., Hipp, M.S., Bracher, A., Hayer-Hartl, M. & Hartl, F.U. Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem. 82, 323–355 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Powers, E.T., Morimoto, R.I., Dillin, A., Kelly, J.W. & Balch, W.E. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 78, 959–991 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Schröder, M. & Kaufman, R.J. The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739–789 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Apweiler, R., Hermjakob, H. & Sharon, N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta 1473, 4–8 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Freeze, H.H., Chong, J.X., Bamshad, M.J. & Ng, B.G. Solving glycosylation disorders: fundamental approaches reveal complicated pathways. Am. J. Hum. Genet. 94, 161–175 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ruiz-Canada, C., Kelleher, D.J. & Gilmore, R. Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms. Cell 136, 272–283 (2009). Identification of a new active site subunit for the OST that is capable of modifying proteins post-translationally.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. O'Conner, S.E. & Imperiali, B. A molecular basis for glycosylation-induced conformational switching. Chem. Biol. 5, 427–437 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Price, J.L. et al. N-glycosylation of enhanced aromatic sequons to increase glycoprotein stability. Biopolymers 98, 195–211 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Solá, R.J. & Griebenow, K. Effects of glycosylation on the stability of protein pharmaceuticals. J. Pharm. Sci. 98, 1223–1245 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hebert, D.N. & Molinari, M. Flagging and docking: dual roles for N-glycans in protein quality control and cellular proteostasis. Trends Biochem. Sci. 37, 404–410 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hoffmann, D. & Florke, H. A structural role for glycosylation: lessons from the hp model. Fold. Des. 3, 337–343 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Shental-Bechor, D. & Levy, Y. Effect of glycosylation on protein folding: a close look at thermodynamic stabilization. Proc. Natl. Acad. Sci. USA 105, 8256–8261 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wormald, M.R. et al. The conformational effects of N-glycosylation on the tailpiece from serum IgM. Eur. J. Biochem. 198, 131–139 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Yamaguchi, H. Chaperone-like functions of N-glycans in the formation and stabilization of protein conformation. Trends Glycosci. Glycotechnol. 14, 139–151 (2002).

    Article  Google Scholar 

  16. Chen, M.M. et al. Perturbing the folding energy landscape of the bacterial immunity protein Im7 by site-specific N-linked glycosylation. Proc. Natl. Acad. Sci. USA 107, 22528–22533 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Price, J.L. et al. Context-dependent effects of asparagine glycosylation on Pin WW folding kinetics and thermodynamics. J. Am. Chem. Soc. 132, 15359–15367 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barb, A.W., Borgert, A.J., Liu, M., Barany, G. & Live, D. Intramolecular glycan-protein interactions in glycoproteins. Methods Enzymol. 478, 365–388 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Quiocho, F.A. Protein-carbohydrate interactions—basic molecular features. Pure Appl. Chem. 61, 1293–1306 (1989).

    Article  CAS  Google Scholar 

  20. Lemieux, R.U. How water provides the impetus for molecular recognition in aqueous solution. Acc. Chem. Res. 29, 373–380 (1996).

    Article  CAS  Google Scholar 

  21. Asensio, J.L., Arda, A., Canada, F.J. & Jimenez-Barbero, J. Carbohydrate-aromatic interactions. Acc. Chem. Res. 46, 946–954 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Gao, J., Bosco, D.A., Powers, E.T. & Kelly, J.W. Localized thermodynamic coupling between hydrogen bonding and microenvironment polarity substantially stabilizes proteins. Nat. Struct. Mol. Biol. 16, 684–690 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Krapp, S., Mimura, Y., Jefferis, R., Huber, R. & Sondermann, P. Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J. Mol. Biol. 325, 979–989 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, W. et al. Structural and energetic basis of carbohydrate-aromatic packing interactions in proteins. J. Am. Chem. Soc. 135, 9877–9884 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chavelas, E.A. & Garcia-Hernandez, E. Heat capacity changes in carbohydrates and protein-carbohydrate complexes. Biochem. J. 420, 239–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Wu, H., Lustbader, J.W., Liu, Y., Canfield, R.E. & Hendrickson, W.A. Structure of human chorionic gonadotropin at 2.6 Å resolution from MAD analysis of the selenomethionyl protein. Structure 2, 545–558 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Weis, W.I. & Drickamer, K. Structural basis of lectin-carbohydrate recognition. Annu. Rev. Biochem. 65, 441–473 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Petrescu, A.J., Milac, A.L., Petrescu, S.M., Dwek, R.A. & Wormald, M.R. Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology 14, 103–114 (2004). Very informative survey of the protein primary, secondary and tertiary structural environments that surround N-linked glycans based on a database of glycoprotein crystal structures.

    Article  CAS  PubMed  Google Scholar 

  29. Surleac, M.D. et al. in Glycosylation (ed. Petrescu, S.M.) 3–20 (InTech, 2012). Additional helpful survey of structural environment of N-linked glycans.

  30. Nishio, M. The CH/π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates. Phys. Chem. Chem. Phys. 13, 13873–13900 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Hanson, S.R. et al. The core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding and enhances stability. Proc. Natl. Acad. Sci. USA 106, 3131–3136 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Culyba, E.K. et al. Protein native-state stabilization by placing aromatic side chains in N-glycosylated reverse turns. Science 331, 571–575 (2011).This article introduced the enhanced aromatic sequon, an N-glycosylated structural module that stabilizes the proteins in which it is found and appears to be glycosylated with unusually high efficiency by OST.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Price, J.L., Powers, D.L., Powers, E.T. & Kelly, J.W. Glycosylation of the enhanced aromatic sequon is similarly stabilizing in three distinct reverse turn contexts. Proc. Natl. Acad. Sci. USA 108, 14127–14132 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wyss, D.F. et al. Conformation and function of the N-linked glycan in the adhesion domain of human CD2. Science 269, 1273–1278 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Glozman, R. et al. N-glycans are direct determinants of CFTR folding and stability in secretory and endocytic membrane traffic. J. Cell Biol. 184, 847–862 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tam, B.M. & Moritz, O.L. The role of rhodopsin glycosylation in protein folding, trafficking, and light-sensitive retinal degeneration. J. Neurosci. 29, 15145–15154 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nyfeler, B. et al. Identification of ERGIC-53 as an intracellular transport receptor of α1-antitrypsin. J. Cell Biol. 180, 705–712 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Caramelo, J.J. & Parodi, A.J. Getting in and out from calnexin/calreticulin cycles. J. Biol. Chem. 283, 10221–10225 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kapoor, M. et al. Interactions of substrate with calreticulin, an endoplasmic reticulum chaperone. J. Biol. Chem. 278, 6194–6200 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Schrag, J.D. et al. The structure of calnexin, an ER chaperone involved in quality control of protein folding. Mol. Cell 8, 633–644 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Frickel, E.M. et al. TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc. Natl. Acad. Sci. USA 99, 1954–1959 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kozlov, G. et al. Structural basis of carbohydrate recognition by calreticulin. J. Biol. Chem. 285, 38612–38620 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hebert, D.N., Foellmer, B. & Helenius, A. Calnexin and calreticulin promote folding, delay oligomerization and suppress degradation of influenza hemagglutinin in microsomes. EMBO J. 15, 2961–2968 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vassilakos, A., Cohen-Doyle, M.F., Peterson, P.A., Jackson, M.R. & Williams, D.B. The molecular chaperone calnexin facilitates folding and assembly of class I histocompatibility molecules. EMBO J. 15, 1495–1506 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Daniels, R., Kurowski, B., Johnson, A.E. & Hebert, D.N. N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin. Mol. Cell 11, 79–90 (2003). Describes a detailed model for the molecular choreography for nascent glycoprotein maturation and its interaction with ER lectin chaperones.

    Article  CAS  PubMed  Google Scholar 

  46. Pearse, B.R. & Hebert, D.N. Lectin chaperones help direct the maturation of glycoproteins in the endoplasmic reticulum. Biochim. Biophys. Acta 1803, 684–693 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Pearse, B.R. et al. The role of UDP-Glc:glycoprotein glucosyltransferase 1 in the maturation of an obligate substrate prosaposin. J. Cell Biol. 189, 829–841 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hebert, D.N., Foellmer, B. & Helenius, A. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 81, 425–433 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Brockmeier, A., Brockmeier, U. & Williams, D.B. Distinct contributions of the lectin and arm domains of calnexin to its molecular chaperone function. J. Biol. Chem. 284, 3433–3444 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Wijeyesakere, S.J., Rizvi, S.M. & Raghavan, M. Glycan-dependent and -independent interactions contribute to cellular substrate recruitment by calreticulin. J. Biol. Chem. 288, 35104–35116 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Warren, G. & Mellman, I. Bulk flow redux? Cell 98, 125–127 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Kamiya, Y. et al. Molecular basis of sugar recognition by the human L-type lectins ERGIC-53, VIPL, and VIP36. J. Biol. Chem. 283, 1857–1861 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Nichols, W.C. et al. Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 93, 61–70 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Hebert, D.N. & Molinari, M. In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol. Rev. 87, 1377–1408 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Needham, P.G. & Brodsky, J.L. How early studies on secreted and membrane protein quality control gave rise to the ER associated degradation (ERAD) pathway: the early history of ERAD. Biochim. Biophys. Acta 1833, 2447–2457 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ermonval, M., Kitzmuller, C., Mir, A.M., Cacan, R. & Ivessa, N.E. N-glycan structure of a short-lived variant of ribophorin I expressed in the MadIA214 glycosylation-defective cell line reveals the role of a mannosidase that is not ER mannosidase I in the process of glycoprotein degradation. Glycobiology 11, 565–576 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Frenkel, Z., Gregory, W., Kornfeld, S. & Lederkremer, G.Z. Endoplasmic reticulum-associated degradation of mammalian glycoproteins involves sugar chain trimming to Man6–5GlcNAc2. J. Biol. Chem. 278, 34119–34124 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Lederkremer, G.Z. & Glickman, M.H. A window of opportunity: timing protein degradation by trimming of sugars and ubiquitins. Trends Biochem. Sci. 30, 297–303 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Iannotti, M.J., Figard, L., Sokac, A.M. & Sifers, R.N.A. Golgi-localized mannosidase (MAN1B1) plays a non-enzymatic gatekeeper role in protein biosynthetic quality control. J. Biol. Chem. 289, 11844–11858 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pan, S., Cheng, X. & Sifers, R.N. Golgi-situated endoplasmic reticulum α-1, 2-mannosidase contributes to the retrieval of ERAD substrates through a direct interaction with gamma-COP. Mol. Biol. Cell 24, 1111–1121 (2013). Provocative support for Man1B1 actually residing in the Golgi.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rymen, D. et al. MAN1B1 deficiency: an unexpected CDG-II. PLoS Genet. 9, e1003989 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Hosokawa, N., Kamiya, Y., Kamiya, D., Kato, K. & Nagata, K. Human OS-9, a lectin required for glycoprotein ERAD, recognizes mannose-trimmed N-glycans. J. Biol. Chem. 284, 17061–17068 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fujimori, T., Kamiya, Y., Nagata, K., Kato, K. & Hosokawa, N. Endoplasmic reticulum lectin XTP3-B inhibits endoplasmic reticulum-associated degradation of a misfolded α1-antitrypsin variant. FEBS J. 280, 1563–1575 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Yamaguchi, D., Hu, D., Matsumoto, N. & Yamamoto, K. Human XTP3-B binds to α1-antitrypsin variant null (Hong Kong) via the C-terminal MRH domain in a glycan-dependent manner. Glycobiology 20, 348–355 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Christianson, J.C., Shaler, T.A., Tyler, R.E. & Kopito, R.R. OS-9 and GRP94 deliver mutant α1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD. Nat. Cell Biol. 10, 272–282 (2008). A tour-de-force analysis of the interactome for ERAD machinery complexes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Saeed, M. et al. Role of the endoplasmic reticulum-associated degradation (ERAD) pathway in degradation of hepatitis C virus envelope proteins and production of virus particles. J. Biol. Chem. 286, 37264–37273 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cormier, J.H., Tamura, T., Sunryd, J.C. & Hebert, D.N. EDEM1 recognition and delivery of misfolded proteins to the SEL1L-containing ERAD complex. Mol. Cell 34, 627–633 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ushioda, R. et al. ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER. Science 321, 569–572 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Hollien, J. & Weissman, J.S. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313, 104–107 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Mori, K. Signalling pathways in the unfolded protein response: development from yeast to mammals. J. Biochem. 146, 743–750 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Shoulders, M.D., Ryno, L.M., Cooley, C.B., Kelly, J.W. & Wiseman, R.L. Broadly applicable methodology for the rapid and dosable small molecule–mediated regulation of transcription factors in human cells. J. Am. Chem. Soc. 135, 8129–8132 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shoulders, M.D. et al. Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments. Cell Rep. 3, 1279–1292 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Denzel, M.S. et al. Hexosamine pathway metabolites enhance protein quality control and prolong life. Cell 156, 1167–1178 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Bernasconi, R. & Molinari, M. ERAD and ERAD tuning: disposal of cargo and of ERAD regulators from the mammalian ER. Curr. Opin. Cell Biol. 23, 176–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Voeltz, G.K., Rolls, M.M. & Rapoport, T.A. Structural organization of the endoplasmic reticulum. EMBO Rep. 3, 944–950 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chevet, E. et al. Phosphorylation by CK2 and MAPK enhances calnexin association with ribosomes. EMBO J. 18, 3655–3666 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lynes, E.M. et al. Palmitoylation is the switch that assigns calnexin to quality control or ER calcium signaling. J. Cell Sci. 126, 3893–3903 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Brockmeier, A. & Williams, D.B. Potent lectin-independent chaperone function of calnexin under conditions prevalent within the lumen of the endoplasmic reticulum. Biochemistry 45, 12906–12916 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Zuber, C. et al. Immunolocalization of UDP-glucose:glycoprotein glucosyltransferase indicates involvement of pre-Golgi intermediates in protein quality control. Proc. Natl. Acad. Sci. USA 98, 10710–10715 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pearse, B.R., Gabriel, L., Wang, N. & Hebert, D.N. A cell-based reglucosylation assay demonstrates the role of GT1 in the quality control of a maturing glycoprotein. J. Cell Biol. 181, 309–320 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Frenkel, Z., Shenkman, M., Kondratyev, M. & Lederkremer, G.Z. Separate roles and different routing of calnexin and ERp57 in endoplasmic reticulum quality control revealed by interactions with asialoglycoprotein receptor chains. Mol. Biol. Cell 15, 2133–2142 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Klampfl, T. et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N. Engl. J. Med. 369, 2379–2390 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Dalziel, M., Crispin, M., Scanlan, C.N., Zitzmann, N. & Dwek, R.A. Emerging principles for the therapeutic exploitation of glycosylation. Science 343, 1235681 (2014).

    Article  PubMed  CAS  Google Scholar 

  84. Perry, S.T. et al. An iminosugar with potent inhibition of dengue virus infection in vivo . Antiviral Res. 98, 35–43 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Butters, T.D., Dwek, R.A. & Platt, F.M. Imino sugar inhibitors for treating the lysosomal glycosphingolipidoses. Glycobiology 15, 43R–52R (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Jeyakumar, M., Dwek, R.A., Butters, T.D. & Platt, F.M. Storage solutions: treating lysosomal disorders of the brain. Nat. Rev. Neurosci. 6, 713–725 (2005).

    Article  PubMed  Google Scholar 

  87. Booth, C. & Koch, G.L. Perturbation of cellular calcium induces secretion of luminal ER proteins. Cell 59, 729–737 (1989).

    Article  CAS  PubMed  Google Scholar 

  88. Egan, M.E. et al. Calcium-pump inhibitors induce functional surface expression of ΔF508-CFTR protein in cystic fibrosis epithelial cells. Nat. Med. 8, 485–492 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Van Goor, F. et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc. Natl. Acad. Sci. USA 106, 18825–18830 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rowe, S.M. & Verkman, A.S. Cystic fibrosis transmembrane regulator correctors and potentiators. Cold Spring Harb. Perspect. Biol. 3, 1–15 (2013).

    Google Scholar 

  91. Balch, W.E., Roth, D.M. & Hutt, D.M. Emergent properties of proteostasis in managing cystic fibrosis. Cold Spring Harb. Perspect. Biol. 3, a004499 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Mu, T.W., Fowler, D.M. & Kelly, J.W. Partial restoration of mutant enzyme homeostasis in three distinct lysosomal storage disease cell lines by altering calcium homeostasis. PLoS Biol. 6, e26 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Mu, T.W. et al. Chemical and biological approaches synergize to ameliorate protein-folding diseases. Cell 134, 769–781 (2008). Provides a powerful example of the potential utility for proteostasis regulators.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ong, D.S., Mu, T.W., Palmer, A.E. & Kelly, J.W. Endoplasmic reticulum Ca2+ increases enhance mutant glucocerebrosidase proteostasis. Nat. Chem. Biol. 6, 424–432 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ong, D.S. et al. FKBP10 depletion enhances glucocerebrosidase proteostasis in Gaucher disease fibroblasts. Chem. Biol. 20, 403–415 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bouchecareilh, M., Hutt, D.M., Szajner, P., Flotte, T.R. & Balch, W.E. Histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA)-mediated correction of α1-antitrypsin deficiency. J. Biol. Chem. 287, 38265–38278 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Di, X.J., Han, D.Y., Wang, Y.J., Chance, M.R. & Mu, T.W. SAHA enhances proteostasis of epilepsy-associated α1(A322D)β2γ2 GABA(A) receptors. Chem. Biol. 20, 1456–1468 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Cui, J., Smith, T., Robbins, P.W. & Samuelson, J. Darwinian selection for sites of Asn-linked glycosylation in phylogenetically disparate eukaryotes and viruses. Proc. Natl. Acad. Sci. USA 106, 13421–13426 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Banerjee, S. et al. The evolution of N-glycan–dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation. Proc. Natl. Acad. Sci. USA 104, 11676–11681 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health under award numbers GM086874 and GM094848 (to D.N.H.); DK075295, AG046495 and GM051105 (to E.T.P. and J.W.K.); and a Chemistry-Biology Interface program training grant (GM08515 to L.L.).

Author information

Authors and Affiliations

Authors

Contributions

D.N.H., L.L., E.T.P. and J.W.K. each contributed to the writing of this manuscript.

Corresponding authors

Correspondence to Daniel N Hebert, Evan T Powers or Jeffery W Kelly.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hebert, D., Lamriben, L., Powers, E. et al. The intrinsic and extrinsic effects of N-linked glycans on glycoproteostasis. Nat Chem Biol 10, 902–910 (2014). https://doi.org/10.1038/nchembio.1651

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1651

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing