Browse Articles

Filter By:

    • Gavin Armstrong
    Research Highlights
  • Molecular simulations have the potential to give valuable insights into experimental results, but can be limited by the time- and length-scales they can simulate. Now, reactive chemistry can be driven through a novel simulation approach, which could have ramifications for many research areas, including astrobiology and the origins of life.

    • Nir Goldman
    News & Views
  • Enhancing the structural diversity of peptide natural products relies on synthetic modifications that are typically not chemo- or regioselective. A nonribosomal peptide synthetase has now been engineered to incorporate a non-natural amino acid containing a reactive bio-orthogonal handle.

    • Jaclyn M. Winter
    • Yi Tang
    News & Views
  • Rotaxanes with cyclodextrin end groups have been used as a platform to investigate anion binding in water, revealing that halogen bonding can serve as the basis for molecular recognition in aqueous solvents, which may have implications in medicinal chemistry and beyond.

    • Mark S. Taylor
    News & Views
  • Trick cutlery and mobile phones have one peculiar element in common, as Marshall Brennan explains.

    • Marshall Brennan
    In Your Element
  • Lignin is an abundant renewable resource, but its intrinsic recalcitrant nature has so far hampered its conversion into higher value chemicals. Now, a two-step strategy, oxidation followed by bond cleavage, has been shown to deconstruct lignin into high yields of low-molecular-weight aromatics.

    • Pieter C. A. Bruijnincx
    • Bert M. Weckhuysen
    News & Views
  • The pseudopterosins are a family of natural products whose interesting anti-inflammatory and pain-relieving properties have inspired many synthetic approaches. Now, an unusual approach that starts with an axially chiral hydrocarbon that engages in a triple Diels–Alder sequence has been shown to result in the shortest total synthesis of a pseudopterosin so far.

    • Christopher G. Newton
    • Samuel L. Drew
    • Michael S. Sherburn
    Article
  • The ability to achieve strong molecular recognition in water is a key challenge for supramolecular chemistry. Now, halogen bonding — the attractive interaction between an electron-deficient halogen atom and a Lewis base — has been shown to be superior to hydrogen bonding for strong anion binding in water. Ripple image: © PhotoDisc/Getty Images.

    • Matthew J. Langton
    • Sean W. Robinson
    • Paul D. Beer
    Article
  • Energy storage using batteries offers a solution to the intermittent nature of energy production from renewable sources; however, such technology must be sustainable. This Review discusses battery development from a sustainability perspective, considering the energy and environmental costs of state-of-the-art Li-ion batteries and the design of new systems beyond Li-ion. Images: batteries, car, globe: © iStock/Thinkstock.

    • D. Larcher
    • J-M. Tarascon
    Review Article
  • The use of β-lactam antibiotics is severely threatened by metallo-β-lactamases (MBLs), which contribute to the development of resistance. Now, crystallographic and solution studies reveal that recently reported MBL inhibition with a rhodanine can be attributed to fragmentation and complex formation with the resulting thioenolate.

    • Jürgen Brem
    • Sander S. van Berkel
    • Christopher J. Schofield
    Article
  • Oxidation of 5-methylcytosine has been proposed to mediate active and passive DNA demethylation. Tracking the history of DNA modifications has now provided the first solid evidence that 5-hydroxymethylcytosine is a stable epigenetic modification.

    • Pijus Brazauskas
    • Skirmantas Kriaucionis
    News & Views
  • Modifying or functionalizing transition metal dichalcogenides (TMDs) allows their properties to be altered and controlled. Now, non-defect-mediated covalent functionalization of single-layer semiconducting TMDs such as MoS2, WS2 and MoSe2 has been demonstrated by reacting them with organohalides, utilizing the excess charge in the 1T metallic phase.

    • Damien Voiry
    • Anandarup Goswami
    • Manish Chhowalla
    Article
  • The mechanism of O2 reduction in aprotic solvents is important for the operation of Li–O2 batteries but is not well understood. A single unified mechanism is now described that regards previous models as limiting cases. It shows that the solubility of the intermediate LiO2 is a critical factor that dictates the mechanism, emphasizing the importance of the solvent.

    • Lee Johnson
    • Chunmei Li
    • Peter G. Bruce
    Article
  • Kinetic, X-ray crystallographic and computational studies have enabled the formulation of a comprehensive mechanistic picture of the enantioselective sulfenofunctionalization reaction of alkenes and a stereochemical model for the origin of the enantioselectivity. The experiments resulted in the development of 2,6-dialkylaryl sulfenylating agents, improving the enantioselectivity of the reaction to >99:1 for γ-alkenols.

    • Scott E. Denmark
    • Eduard Hartmann
    • Hao Wang
    Article
  • Natural products provide a rich source of leads for drug discovery. Now, a computational method is available that can be used to identify the macromolecular targets of these compounds. Much like medicinal chemists' reasoning, the software infers target information by comparing the substructures with those of drugs and other natural products with known targets.

    • Daniel Reker
    • Anna M. Perna
    • Gisbert Schneider
    Article
  • Computational chemistry is traditionally used to interpret experimental findings. Now its use in reaction discovery is described with the development of the ab initio nanoreactor — a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps.

    • Lee-Ping Wang
    • Alexey Titov
    • Todd J. Martínez
    Article
  • Transferring molecular motion to macroscopic shape change of a crystal has potential application in actuators, or ‘artificial muscles’. Now, a single crystal of a Ni complex has been shown to exhibit a large, abrupt, temperature-induced crystal expansion/contraction near room temperature. The crystal deformation is induced by a collective 90° rotation of oxalate anions in the complex.

    • Zi-Shuo Yao
    • Masaki Mito
    • Osamu Sato
    Article