Browse Articles

Filter By:

  • Developing stimuli-responsive bioorthogonal tetrazine ligations remains highly challenging, but a versatile approach that uses photocaged dihydrotetrazines has now been developed. Photouncaging results in the spontaneous formation of reactive tetrazines that rapidly react with dienophiles such as trans-cyclooctenes. As a demonstration, the method was used for live-cell labelling with single-cell precision and light-triggered drug delivery.

    • Luping Liu
    • Dongyang Zhang
    • Neal K. Devaraj
    Article
  • Photoredox catalysts offer a promising approach to performing reactions with high energetic requirements, however, the influence of solvent and counter ions is not fully understood. Now, a microwave-based technique is shown to give direct insight into their effects on charge reorganization during catalysis.

    • Ferdinand C. Grozema
    News & Views
  • Choline 2-hexenoate is an ionic compound that is a liquid at room temperature, and is just one of a class of compounds that have huge potential in biomedical research and clinical applications, explains Eden E. L. Tanner.

    • Eden E. L. Tanner
    In Your Element
  • Michelle Francl explores how glass revolutionized chemistry.

    • Michelle Francl
    Thesis
  • Amino-containing four-carbon threose nucleic acids (TNAs) have long been considered to be prebiotically irrelevant due to their difficult formation. Now, a prebiotically plausible route to 3′-amino-TNA nucleoside triphosphate has been developed, raising the possibility of 3′-amino-TNA as a non-canonical nucleic acid during the origin of life.

    • Yingyu Liu
    • Yajun Wang
    News & Views
  • This year marks the 50th anniversary of Baird’s rules of aromaticity — a set of perturbational molecular orbital theory analyses that has garnered considerable attention in the past ten years in light of its many real-world applications in photochemistry.

    • Lucas J. Karas
    • Judy I. Wu
    News & Views
  • Over the past 25 years, the photo-induced spin-crossover behaviour of Fe(II) complexes has puzzled scientists. Now, a symmetry-breaking twisting mode has been observed during the relaxation of such a complex. Controlling its configuration using enantiopure counterions has also been shown to slow down the relaxation.

    • J. Olof Johansson
    News & Views
  • Antibody-mediated delivery of therapeutics has been primarily limited to agents containing amine, alcohol or thiol functional groups. Now, an approach has been developed to create stable and bio-reversible prodrugs that mask ortho-quinones. Drug release requires both protease activation followed by acid-assisted elimination.

    • Thomas Pillow
    News & Views
  • Nucleotides are essential to the origins of life, and their synthesis is a key challenge for prebiotic chemistry. Contrary to prior expectation, non-canonical 3′-amino-TNA nucleosides are shown to be synthesized diastereoselectively and regiospecifically under prebiotically plausible conditions. The enhanced reactivity of 3′-amino-TNAs also promotes their selective non-enzymatic triphosphorylation in water.

    • Daniel Whitaker
    • Matthew W. Powner
    Article
  • Chemically fuelled synthetic molecular machines are capable of driving and sustaining non-equilibrium motion, analogous to the biomachinery that underpins life. This Review discusses the chemical and physical features of biological and synthetic chemical fuels and highlights potential challenges and opportunities for the development of synthetic chemically fuelled machinery.

    • Stefan Borsley
    • David A. Leigh
    • Benjamin M. W. Roberts
    Review Article
  • The biochemical roles and mechanisms of multiphase membraneless organelles are not yet well understood. Now, multiphase peptide droplets have been shown to sort RNA based on whether it is single- or double-stranded, as well as impact RNA duplexation through in-droplet thermodynamic equilibria. This work provides insight into possible primitive mechanisms for multicompartment intracellular condensates and can aid in the design of functional artificial membraneless organelles.

    • Saehyun Choi
    • McCauley O. Meyer
    • Christine D. Keating
    Article
  • Ions in salt solutions perturb the hydrogen bonding between the surrounding water molecules, altering the properties of water, but how ion polarity affects this is not fully understood. By monitoring the dissipation of terahertz energy in salt solutions, it has now been shown that intermolecular rotational-to-translational energy transfer is enhanced by highly charged cations and reduced by highly charged anions.

    • Vasileios Balos
    • Naveen Kumar Kaliannan
    • Mohsen Sajadi
    Article Open Access
  • Despite mechanically axially chiral (MAC) catenanes being recognized in 1961, their stereoselective synthesis had not been disclosed until now. Closer inspection of the MAC stereogenic unit has also led to the identification of an analogous, but unremarked upon, form of rotaxane stereochemistry and the conceptualization of a general approach to prepare MAC molecules stereoselectively.

    • John R. J. Maynard
    • Peter Gallagher
    • Stephen M. Goldup
    Article
  • The strained topology of [n]paracyclophenylenes ([n]CPPs) typically prevents their π sysytem from being extended, but now the formation of a planar π-extended CPP has been achieved through a bottom-up on-surface synthesis approach. The planar π-extended [12]CPP produced by this method is a nanographene featuring an all-armchair edge, which leads to delocalized electronic states around the entire ring.

    • Feifei Xiang
    • Sven Maisel
    • Sabine Maier
    Article
  • The direct copolymerization of carbon dioxide and commodity olefins has been a long-standing challenge in polymer science. Now, an indirect approach has been developed in which hydrogenated disubstituted valerolactones derived from telomerization of CO2 and butadiene can undergo ring-opening polymerization, yielding chemically recyclable and degradable aliphatic polyesters with high CO2 content.

    • Rachel M. Rapagnani
    • Rachel J. Dunscomb
    • Ian A. Tonks
    Article
  • A strategy for protecting redox-active ortho-quinones, which show promise as anticancer agents but suffer from redox-cycling behaviour and systemic toxicity, has been developed. The ortho-quinones are derivatized to redox-inactive para-aminobenzyl ketols. Upon amine deprotection, an acid-promoted, self-immolative C–C bond-cleaving 1,6-elimination releases the redox-active hydroquinone. The strategy also enables conjugation to a carrier for targeted delivery of ortho-quinone species.

    • Lavinia Dunsmore
    • Claudio D. Navo
    • Gonçalo J. L. Bernardes
    Article Open Access
  • Functionalizing an intact carbohydrate core with acetals allows for the dramatically simplified production of a plastic precursor directly during the initial fractionation of non-edible biomass. When polymerized, the rigid and polar carbohydrate core also leads to bioplastics with competitive material and end-of life properties.

    • Lorenz P. Manker
    • Graham R. Dick
    • Jeremy S. Luterbacher
    Article
  • Analogues of mRNA 5′ caps containing a photo-cleavable group have now been developed. These so-called FlashCaps can be used for routine in vitro transcription to make long mRNAs containing a cap. In cells, the capped mRNAs are translationally muted; however, upon irradiation by light, the photo-cleavable group is removed without leaving any remaining modification and mRNA is then translated into the corresponding protein.

    • Nils Klöcker
    • Florian P. Weissenboeck
    • Andrea Rentmeister
    Article Open Access
  • Cytoskeletons are essential components of cells that perform a variety of tasks, and artificial cytoskeletons that perform these functions are required for the bottom-up assembly of synthetic cells. Now, a multi-functional cytoskeleton mimic has been engineered from DNA, consisting of confined DNA filaments that are capable of reversible self-assembly and transport of gold nanoparticles and vesicular cargo.

    • Pengfei Zhan
    • Kevin Jahnke
    • Kerstin Göpfrich
    Article Open Access
  • Aqueous organic redox flow batteries offer a safe and inexpensive solution to the problem of storing electricity produced from intermittent renewables. However, decomposition of the redox-active organic molecules that they rely on limits their lifetimes, preventing commercialization. Now it has been shown that these redox molecules can be electro-recomposed in situ, rejuvenating their function.

    • Yan Jing
    • Evan Wenbo Zhao
    • Michael J. Aziz
    Article