Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multicilin promotes centriole assembly and ciliogenesis during multiciliate cell differentiation

Abstract

Multiciliate cells function prominently in the respiratory system, brain ependyma and female reproductive tract to produce vigorous fluid flow along epithelial surfaces. These specialized cells form during development when epithelial progenitors undergo an unusual form of ciliogenesis, in which they assemble and project hundreds of motile cilia. Notch inhibits multiciliate cell formation in diverse epithelia, but how progenitors overcome lateral inhibition and initiate multiciliate cell differentiation is unknown. Here we identify a coiled-coil protein, termed multicilin, which is regulated by Notch and highly expressed in developing epithelia where multiciliate cells form. Inhibiting multicilin function specifically blocks multiciliate cell formation in Xenopus skin and kidney, whereas ectopic expression induces the differentiation of multiciliate cells in ectopic locations. Multicilin localizes to the nucleus, where it directly activates the expression of genes required for multiciliate cell formation, including foxj1 and genes mediating centriole assembly. Multicilin is also necessary and sufficient to promote multiciliate cell differentiation in mouse airway epithelial cultures. These findings indicate that multicilin initiates multiciliate cell differentiation in diverse tissues, by coordinately promoting the transcriptional changes required for motile ciliogenesis and centriole assembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MCI morphants lack MCCs.
Figure 2: MCI induces MCC differentiation.
Figure 3: MCI acts downstream of notch to promote centriole assembly and motile cilia extension through foxj1.
Figure 4: MCI induced centriole assembly.
Figure 5: MCI activates MCC gene expression.
Figure 6: Domains required for MCI function.
Figure 7: Mouse MCI governs MCC differentiation in MTEC cultures.

Similar content being viewed by others

References

  1. Sharma, N., Berbari, N. F. & Yoder, B. K. Ciliary dysfunction in developmental abnormalities and diseases. Curr. Top Dev. Biol. 85, 371–427 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Thomas, J. et al. Transcriptional control of genes involved in ciliogenesis: a first step in making cilia. Biol. Cell 102, 499–513 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Basu, B. & Brueckner, M. Cilia multifunctional organelles at the center of vertebrate left–right asymmetry. Curr. Top. Dev. Biol. 85, 151–174 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Satir, P. & Christensen, S. T. Overview of structure and function of mammalian cilia. Annu. Rev. Physiol. 69, 377–400 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Brody, S. L., Yan, X. H., Wuerffel, M. K., Song, S. K. & Shapiro, S. D. Ciliogenesis and left–right axis defects in forkhead factor HFH-4-null mice. Am. J. Respir. Cell Mol. Biol. 23, 45–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Chen, J., Knowles, H. J., Hebert, J. L. & Hackett, B. P. Mutation of the mouse hepatocyte nuclear factor/forkhead homologue 4 gene results in an absence of cilia and random left–right asymmetry. J. Clin. Invest. 102, 1077–1082 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stubbs, J. L., Oishi, I., Izpisua Belmonte, J. C. & Kintner, C. The forkhead protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos. Nat. Genet. 40, 1454–1460 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu, X., Ng, C. P., Habacher, H. & Roy, S. Foxj1 transcription factors are master regulators of the motile ciliogenic program. Nat. Genet. 40, 1445–1453 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Marshall, W. F. Basal bodies platforms for building cilia. Curr. Top. Dev. Biol. 85, 1–22 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Deblandre, G. A., Wettstein, D. A., Koyano-Nakagawa, N. & Kintner, C. A two-step mechanism generates the spacing pattern of the ciliated cells in the skin of Xenopus embryos. Development 126, 4715–4728 (1999).

    CAS  PubMed  Google Scholar 

  11. Guseh, J. S. et al. Notch signaling promotes airway mucous metaplasia and inhibits alveolar development. Development 136, 1751–1759 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morimoto, M. et al. Canonical Notch signaling in the developing lung is required for determination of arterial smooth muscle cells and selection of Clara versus ciliated cell fate. J. Cell Sci. 123, 213–224 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tsao, P. N. et al. Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development 136, 2297–2307 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pefani, D. E. et al. Idas, a novel phylogenetically conserved geminin-related protein, binds to geminin and is required for cell cycle progression. J. Biol. Chem. 286, 23234–23246 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Balestrini, A., Cosentino, C., Errico, A., Garner, E. & Costanzo, V. GEMC1 is a TopBP1-interacting protein required for chromosomal DNA replication. Nat. Cell Biol. 12, 484–491 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seo, S. & Kroll, K. L. Geminin’s double life: chromatin connections that regulate transcription at the transition from proliferation to differentiation. Cell Cycle 5, 374–379 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Marcet, B. et al. Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway. Nat. Cell Biol. 13, 693–699 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Hayes, J. M. et al. Identification of novel ciliogenesis factors using a new in vivo model for mucociliary epithelial development. Dev. Biol. 312, 115–130 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Quigley, I. K., Stubbs, J. L. & Kintner, C. Specification of ion transport cells in the Xenopus larval skin. Development 138, 705–714 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dubaissi, E. & Papalopulu, N. Embryonic frog epidermis: a model for the study of cell-cell interactions in the development of mucociliary disease. Dis. Model Mech. 4, 179–192 (2010).

    Article  PubMed  Google Scholar 

  21. Heasman, J. Morpholino oligos: making sense of antisense? Dev. Biol. 243, 209–214 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Stubbs, J. L., Davidson, L., Keller, R. & Kintner, C. Radial intercalation ofciliated cells during Xenopus skin development. Development 133, 2507–2515 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Kolm, P. J. & Sive, H. L. Efficient hormone-inducible protein function in Xenopus laevis. Dev. Biol. 171, 267–272 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Dirksen, E. R. Centriole and basal body formation during ciliogenesis revisited. Biol. Cell 72, 31–38 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Vladar, E. K. & Stearns, T. Molecular characterization of centriole assembly in ciliated epithelial cells. J. Cell Biol. 178, 31–42 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fawcett, S. R. & Klymkowsky, M. W. Embryonic expression of Xenopus laevis SOX7. Gene Expr. Patterns 4, 29–33 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Schweickert, A. et al. Cilia-driven leftward flow determines laterality in Xenopus. Curr. Biol. 17, 60–66 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. You, Y., Richer, E. J., Huang, T. & Brody, S. L. Growth and differentiation of mouse tracheal epithelial cells: selection of a proliferative population. Am. J. Physiol. Lung. Cell Mol. Physiol. 283, L1315–L1321 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, Y., Pathak, N., Kramer-Zucker, A. & Drummond, I. A. Notch signaling controls the differentiation of transporting epithelia and multiciliated cells in the zebrafish pronephros. Development 134, 1111–1122 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Ma, M. & Jiang, Y. J. Jagged2a-notch signaling mediates cell fate choice in the zebrafish pronephric duct. PLoS Genet. 3, 133–145 (2007).

    Article  CAS  Google Scholar 

  31. Lim, J. W., Hummert, P., Mills, J. C. & Kroll, K. L. Geminin cooperates with Polycomb to restrain multi-lineage commitment in the early embryo. Development 138, 33–44 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dzhindzhev, N. S. et al. Asterless is a scaffold for the onset of centriole assembly. Nature 467, 714–718 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Bettencourt-Dias, M. et al. SAK/PLK4 is required for centriole duplication and flagella development. Curr. Biol. 15, 2199–2207 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Hatch, E. M., Kulukian, A., Holland, A. J., Cleveland, D. W. & Stearns, T. Cep152 interacts with Plk4 and is required for centriole duplication. J. Cell Biol. 191, 721–729 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cizmecioglu, O. et al. Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome. J. Cell Biol. 191, 731–739 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Habedanck, R., Stierhof, Y. D., Wilkinson, C. J. & Nigg, E. A. The Polo kinase Plk4 functions in centriole duplication. Nat. Cell Biol. 7, 1140–1146 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Fryer, C. J., Lamar, E., Turbachova, I., Kintner, C. & Jones, K. A. Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev. 16, 1397–1411 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wettstein, D. A., Turner, D.L. & Kintner, C. The Xenopus homolog of Drosophila Suppressor of Hairless mediates Notch signaling during primary neurogenesis. Development 124, 693–702 (1997).

    CAS  PubMed  Google Scholar 

  39. Zapala, M. A., Lockhart, D. J., Pankratz, D. G., Garcia, A. J. & Barlow, C. Software and methods for oligonucleotide and cDNA array data analysis. Genome Biol. 3 (SOFTWARE0001) (2002).

  40. Turner, D. L. & Weintraub, H. Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev. 8, 1434–1447 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Dammermann, A. et al. The hydrolethalus syndrome protein HYLS-1 links core centriole structure to cilia formation. Genes Dev. 23, 2046–2059 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mitchell, B. et al. The PCP pathway instructs the planar orientation of ciliated cells in the Xenopus larval skin. Curr. Biol. 19, 924–929 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Follenzi, A., Ailles, L. E., Bakovic, S., Geuna, M. & Naldini, L. Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat. Genet. 25, 217–222 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Sive, H., Grainger, R. M. & Harland, R. M. The Early Development of Xenopus laevis: A Laboratory Manual (Cold Spring Harbor Press, 1998).

    Google Scholar 

  45. Amaya, E. & Kroll, K. L. A method for generating transgenic frog embryos. Methods Mol. Biol. 97, 393–414 (1999).

    CAS  PubMed  Google Scholar 

  46. Sparrow, D. B., Latinkic, B. & Mohun, T. J. A simplified method of generating transgenic Xenopus. Nucleic Acids Res. 28, E12 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dull, T. et al. A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work described here was supported by NIH grants RO1 GM096021 (C.K.) and R01 GM059823 (J.D.A.) and an AP Giannini Postdoctoral Fellowship (E.K.V). The authors thank E. Campbell for technical assistance and members of the laboratory for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.L.S., E.K.V. and C.K. carried out the experimental analysis. All authors participated in aspects of project planning, data analysis and manuscript preparation.

Corresponding author

Correspondence to C. Kintner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2395 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stubbs, J., Vladar, E., Axelrod, J. et al. Multicilin promotes centriole assembly and ciliogenesis during multiciliate cell differentiation. Nat Cell Biol 14, 140–147 (2012). https://doi.org/10.1038/ncb2406

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2406

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing