Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Microtubules induce self-organization of polarized PAR domains in Caenorhabditis elegans zygotes

Abstract

A hallmark of polarized cells is the segregation of the PAR polarity regulators into asymmetric domains at the cell cortex1,2. Antagonistic interactions involving two conserved kinases, atypical protein kinase C (aPKC) and PAR-1, have been implicated in polarity maintenance1,2, but the mechanisms that initiate the formation of asymmetric PAR domains are not understood. Here, we describe one pathway used by the sperm-donated centrosome to polarize the PAR proteins in Caenorhabditis elegans zygotes. Before polarization, cortical aPKC excludes PAR-1 kinase and its binding partner PAR-2 by phosphorylation. During symmetry breaking, microtubules nucleated by the centrosome locally protect PAR-2 from phosphorylation by aPKC, allowing PAR-2 and PAR-1 to access the cortex nearest the centrosome. Cortical PAR-1 phosphorylates PAR-3, causing the PAR-3–aPKC complex to leave the cortex. Our findings illustrate how microtubules, independently of actin dynamics, stimulate the self-organization of PAR proteins by providing local protection against a global barrier imposed by aPKC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PAR-2 dynamics at symmetry breaking.
Figure 2: Microtubule binding protects PAR-2 from aPKC phosphorylation and allows PAR-2 to interact with phospholipids in the presence of aPKC.
Figure 3: Microtubule binding is required for PAR-2 to localize to the cortex in the absence of cortical flows.
Figure 4: PAR-2 recruits PAR-1 to the cortex, leading to exclusion of anterior PARs.
Figure 5: Microtubule binding by PAR-2 is required for efficient polarity initiation in wild-type embryos.

Similar content being viewed by others

References

  1. Goldstein, B. & Macara, I. The PAR proteins: fundamental players in animal cell polarization. Dev. Cell 13, 609–622 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. St Johnston, D. & Ahringer, J. Cell polarity in eggs and epithelia: parallels and diversity. Cell 141, 757–774 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Munro, E., Nance, J. & Priess, J. R. Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior–posterior polarity in the early C. elegans embryo. Dev. Cell 7, 413–424 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Zonies, S., Motegi, F., Hao, Y. & Seydoux, G. Symmetry breaking and polarization of the C. elegans zygote by the polarity protein PAR-2. Development 137, 1669–1677 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cuenca, A. A., Schetter, A., Aceto, D., Kemphues, K. & Seydoux, G. Polarization of the C. elegans zygote proceeds via distinct establishment and maintenance phases. Development 130, 1255–1265 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Shelton, C., Carter, J., Ellis, G. & Bowerman, B. The nonmuscle myosin regulatory light chain gene mlc-4 is required for cytokinesis, anterior–posterior polarity, and body morphology during Caenorhabditis elegans embryogenesis. J. Cell Biol. 146, 439–451 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wallenfang, M. R. & Seydoux, G. Polarization of the anterior–posterior axis of C. elegans is a microtubule-directed process. Nature 408, 89–92 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Hamill, D. R., Severson, A. F., Carter, J. C. & Bowerman, B. Centrosome maturation and mitotic spindle assembly in C. elegans require SPD-5, a protein with multiple coiled-coil domains. Dev. Cell 3, 673–684 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Hiller, G. & Weber, K. Radioimmunoassay for tubulin: a quantitative comparison of the tubulin content of different established tissue culture cells and tissues. Cell 14, 795–804 (1978).

    Article  CAS  PubMed  Google Scholar 

  10. Moravcevic, K. et al. Kinase associated-1 domains drive MARK/PAR1 kinases to membrane targets by binding acidic phospholipids. Cell 143, 966–977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu, H. et al. PDZ domains of Par-3 as potential phosphoinositide signaling integrators. Mol. Cell 28, 886–898 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Hao, Y., Boyd, L. & Seydoux, G. Stabilization of cell polarity by the C. elegans RING protein PAR-2. Dev. Cell 10, 199–208 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Benton, R. & St Johnston, D. Drosophila PAR-1 and 14-3-3 inhibit Bazooka/PAR-3 to establish complementary cortical domains in polarized cells. Cell 115, 691–704 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Guo, S. & Kemphues, K. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–620 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Griffin, E., Odde, E. & Seydoux, G. Regulation of the MEX-5 gradient by a spatially segregated kinase/phosphatase cycle. Cell 146, 955–968 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, B., Kim, H., Beers, M. & Kemphues, K. Different domains of C. elegans PAR-3 are required at different times in development. Dev. Biol. 344, 745–757 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Matenia, D. & Mandelkow, E. M. The tau of MARK: a polarized view of the cytoskeleton. Trends Biochem. Sci. 34, 332–342 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Tsai, M. C. & Ahringer, J. Microtubules are involved in anterior–posterior axis formation in C. elegans embryos. J. Cell Biol. 179, 397–402 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cowan, C. R. & Hyman, A. A. Centrosomes direct cell polarity independently of microtubule assembly in C. elegans embryos. Nature 431, 92–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Sonneville, R. & Gonczy, P. zyg-11 and cul-2 regulate progression throughmeiosis II and polarity establishment in C. elegans. Development 131, 3527–3543 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Jenkins, N., Saam, J. R. & Mango, S. E. CYK-4/GAP provides a localized cueto initiate anteroposterior polarity upon fertilization. Science 313, 1298–1301 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Watts, J. et al. par-6, a gene involved in the establishment of asymmetry in early C. elegans embryos, mediates the asymmetric localization of PAR-3. Development 122, 3133–3140 (1996).

    CAS  PubMed  Google Scholar 

  23. Labbé, J. C., Pacquelet, A., Marty, T. & Gotta, M. A genomewide screen for suppressors of par-2 uncovers potential regulators of PAR protein-dependent cell polarity in Caenorhabditis elegans. Genetics 174, 285–295 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hoege, C. et al. LGL can partition the cortex of one-cell Caenorhabditis elegans embryos into two domains. Curr. Biol. 20, 1296–1303 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Beatty, A., Morton, D. & Kemphues, K. The C. elegans homolog of Drosophila Lethal giant larvae functions redundantly with PAR-2 to maintain polarity in the early embryo. Development 137, 3995–4004 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goehring, N. W., Hoege, C., Grill, S. W. & Hyman, A. A. PAR proteins diffuse freely across the anterior–posterior boundary in polarized C. elegans embryos. J. Cell Biol. 193, 583–594 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Doerflinger, H. et al. Bazooka is required for polarisation of the Drosophila anterior–posterior axis. Development 137, 1765–1773 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Siegrist, S. E. & Doe, C. Q. Microtubule-induced cortical cell polarity. Genes Dev. 21, 483–496 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Morita, K., Hirono, K. & Han, M. The Caenorhabditis elegans ect-2 RhoGEF gene regulates cytokinesis and migration of epidermal P cells. EMBO Rep. 6, 1163–1168 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kachur, T., Audhya, A. & Pilgrim, D. UNC-45 is required for NMY-2 contractile function in early embryonic polarity establishment and germline cellularization in C. elegans. Dev. Biol. 314, 287–299 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Etemad-Moghadam, B., Guo, S. & Kemphues, K. Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell 83, 743–752 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Merritt, C. & Seydoux, G. Transgenic solutions for the germline. WormBook 1–21 (2010).

  33. Praitis, V., Casey, E., Collar, D. & Austin, J. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157, 1217–1226 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Maeda, I., Kohara, Y., Yamamoto, M. & Sugimoto, A. Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr. Biol. 11, 171–176 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Kamath, R. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Hannak, E., Kirkham, M., Hyman, A. A. & Oegema, K. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J. Cell Biol. 155, 1109–1116 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dong, Y., Bogdanova, A., Habermann, B., Zachariae, W. & Ahringer, J. Identification of the C. elegans anaphase promoting complex subunit Cdc26 by phenotypic profiling and functional rescue in yeast. BMC Dev. Biol. 7, 19 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nance, J., Munro, E. & Priess, J. C. elegans PAR-3 and PAR-6 are required for apicobasal asymmetries associated with cell adhesion and gastrulation. Development 130, 5339–5350 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Aono, S., Legouis, R., Hoose, W. & Kemphues, K. PAR-3 is required for epithelial cell polarity in the distal spermatheca of C. elegans. Development 131, 2865–2874 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Japan Society for the Promotion of Science (F.M.), the American Cancer Society (PF-08-158-01; E.G.) and the National Institute of Health (R01HD37047; G.S.). G.S. is an investigator of the Howard Hughes Medical Institute. We thank J. Ahringer, A. Audhya, L. Boyd, A. Desai, P. Gonczy, M. Gotta, R. Green, C. Hoege, K. Kemphues, Y. Nishimura, K. F. O’Connell, K. Oegema, L. S. Rose, A. Sugimoto, C. M. Waterman, H. Zaher and the Caenorhabditis Genetic Center for reagents and expertise.

Author information

Authors and Affiliations

Authors

Contributions

F.M. and G.S. designed the study and wrote the manuscript. S.Z. carried out experiments shown in Fig. 3b and Supplementary Fig. S5b, Y.H. A.A.C. and E.G. carried out experiments shown in Supplementary Fig. S8c,d and F.M. carried out all other experiments.

Corresponding author

Correspondence to Geraldine Seydoux.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1839 kb)

Supplementary Table 1

Supplementary Information (XLS 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motegi, F., Zonies, S., Hao, Y. et al. Microtubules induce self-organization of polarized PAR domains in Caenorhabditis elegans zygotes. Nat Cell Biol 13, 1361–1367 (2011). https://doi.org/10.1038/ncb2354

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2354

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing