Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optogenetic control of endogenous Ca2+ channels in vivo

Abstract

Calcium (Ca2+) signals that are precisely modulated in space and time mediate a myriad of cellular processes, including contraction, excitation, growth, differentiation and apoptosis1. However, study of Ca2+ responses has been hampered by technological limitations of existing Ca2+-modulating tools. Here we present OptoSTIM1, an optogenetic tool for manipulating intracellular Ca2+ levels through activation of Ca2+-selective endogenous Ca2+ release−activated Ca2+ (CRAC) channels. Using OptoSTIM1, which combines a plant photoreceptor2,3 and the CRAC channel regulator STIM1 (ref. 4), we quantitatively and qualitatively controlled intracellular Ca2+ levels in various biological systems, including zebrafish embryos and human embryonic stem cells. We demonstrate that activating OptoSTIM1 in the CA1 hippocampal region of mice selectively reinforced contextual memory formation. The broad utility of OptoSTIM1 will expand our mechanistic understanding of numerous Ca2+-associated processes and facilitate screening for drug candidates that antagonize Ca2+ signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Light-induced Ca2+ influx and activation of Ca2+-responsive signaling pathways.
Figure 2: OptoSTIM1-activated Ca2+ increase in zebrafish embryos and human embryonic stem cells.
Figure 3: Reinforcement of context-specific memory induced by OptoSTIM1 activation in the CA1 hippocampus of mice.

Similar content being viewed by others

References

  1. Berridge, M.J., Lipp, P. & Bootman, M.D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21 (2000).

    Article  CAS  Google Scholar 

  2. Kennedy, M.J. et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nat. Methods 7, 973–975 (2010).

    Article  CAS  Google Scholar 

  3. Bugaj, L.J., Choksi, A.T., Mesuda, C.K., Kane, R.S. & Schaffer, D.V. Optogenetic protein clustering and signaling activation in mammalian cells. Nat. Methods 10, 249–252 (2013).

    Article  CAS  Google Scholar 

  4. Soboloff, J., Rothberg, B.S., Madesh, M. & Gill, D.L. STIM proteins: dynamic calcium signal transducers. Nat. Rev. Mol. Cell Biol. 13, 549–565 (2012).

    Article  CAS  Google Scholar 

  5. Ellis-Davies, G.C.R. Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nat. Methods 4, 619–628 (2007).

    Article  CAS  Google Scholar 

  6. Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011).

    Article  CAS  Google Scholar 

  7. Fukuda, N., Matsuda, T. & Nagai, T. Optical control of the Ca2+ concentration in a live specimen with a genetically encoded Ca2+-releasing molecular tool. ACS Chem. Biol. 9, 1197–1203 (2014).

    Article  CAS  Google Scholar 

  8. Pham, E., Mils, E. & Truong, K. A synthetic photoactivated protein to generate local or global Ca2+ signals. Chem. Biol. 18, 880–890 (2011).

    Article  CAS  Google Scholar 

  9. Korzeniowski, M.K., Manjarrés, I.M., Varnai, P. & Balla, T. Activation of STIM1-Orai1 involves an intramolecular switching mechanism. Sci. Signal. 3, ra82 (2010).

    Article  CAS  Google Scholar 

  10. Park, C.Y. et al. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136, 876–890 (2009).

    Article  CAS  Google Scholar 

  11. Zhao, Y. et al. An expanded palette of genetically encoded Ca2+ indicators. Science 333, 1888–1891 (2011).

    Article  CAS  Google Scholar 

  12. Liu, H.T. et al. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322, 1535–1539 (2008).

    Article  CAS  Google Scholar 

  13. Taslimi, A. et al. An optimized optogenetic clustering tool for probing protein interaction and function. Nat. Commun. 5, 4925 (2014).

    Article  CAS  Google Scholar 

  14. Hoover, P.J. & Lewis, R.S. Stoichiometric requirements for trapping and gating of Ca2+ release-activated Ca2+ (CRAC) channels by stromal interaction molecule 1 (STIM1). Proc. Natl. Acad. Sci. USA 108, 13299–13304 (2011).

    Article  CAS  Google Scholar 

  15. Rothbauer, U. et al. Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat. Methods 3, 887–889 (2006).

    Article  CAS  Google Scholar 

  16. Komatsu, T. et al. Organelle-specific, rapid induction of molecular activities and membrane tethering. Nat. Methods 7, 206–208 (2010).

    Article  CAS  Google Scholar 

  17. Grigoriev, I. et al. STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER. Curr. Biol. 18, 177–182 (2008).

    Article  CAS  Google Scholar 

  18. Vig, M. et al. CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr. Biol. 16, 2073–2079 (2006).

    Article  CAS  Google Scholar 

  19. McNally, B.A., Somasundaram, A., Yamashita, M. & Prakriya, M. Gated regulation of CRAC channel ion selectivity by STIM1. Nature 482, 241–245 (2012).

    Article  CAS  Google Scholar 

  20. Tomida, T., Hirose, K., Takizawa, A., Shibasaki, F. & Iino, M. NFAT functions as a working memory of Ca2+ signals in decoding Ca2+ oscillation. EMBO J. 22, 3825–3832 (2003).

    Article  CAS  Google Scholar 

  21. Prevarskaya, N., Skryma, R. & Shuba, Y. Calcium in tumor metastasis: new roles for known actors. Nat. Rev. Cancer 11, 609–618 (2011).

    Article  CAS  Google Scholar 

  22. Shcherbakova, D.M. & Verkhusha, V.V. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat. Methods 10, 751–754 (2013).

    Article  CAS  Google Scholar 

  23. Riedl, J. et al. Lifeact: a versatile marker to visualize F-actin. Nat. Methods 5, 605–607 (2008).

    Article  CAS  Google Scholar 

  24. Muto, A., Ohkura, M., Abe, G., Nakai, J. & Kawakami, K. Real-time visualization of neuronal activity during perception. Curr. Biol. 23, 307–311 (2013).

    Article  CAS  Google Scholar 

  25. Apáti, Á. et al. Calcium signaling in pluripotent stem cells. Mol. Cell. Endocrinol. 353, 57–67 (2012).

    Article  Google Scholar 

  26. Wong, R.C., Pébay, A., Nguyen, L.T., Koh, K.L. & Pera, M.F. Presence of functional gap junctions in human embryonic stem cells. Stem Cells 22, 883–889 (2004).

    Article  CAS  Google Scholar 

  27. Hooper, R., Rothberg, B.S. & Soboloff, J. Neuronal STIMulation at rest. Sci. Signal. 7, pe18 (2014).

    Article  Google Scholar 

  28. LeDoux, J.E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).

    Article  CAS  Google Scholar 

  29. West, A.E., Griffith, E.C. & Greenberg, M.E. Regulation of transcription factors by neuronal activity. Nat. Rev. Neurosci. 3, 921–931 (2002).

    Article  CAS  Google Scholar 

  30. Parekh, A.B. Store-operated CRAC channels: function in health and disease. Nat. Rev. Drug Discov. 9, 399–410 (2010).

    Article  CAS  Google Scholar 

  31. Prakriya, M. et al. Orai1 is an essential pore subunit of the CRAC channel. Nature 443, 230–233 (2006).

    Article  CAS  Google Scholar 

  32. Gunaydin, L.A. et al. Ultrafast optogenetic control. Nat. Neurosci. 13, 387–392 (2010).

    Article  CAS  Google Scholar 

  33. Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007).

    Article  CAS  Google Scholar 

  34. Lee, S. et al. Reversible protein inactivation by optogenetic trapping in cells. Nat. Methods 11, 633–636 (2014).

    Article  CAS  Google Scholar 

  35. Kaech, S. & Banker, G. Culturing hippocampal neurons. Nat. Protoc. 1, 2406–2415 (2006).

    Article  CAS  Google Scholar 

  36. Schmittgen, T.D. & Livak, K.J. Analyzign real-time PCR by the comparative CT method. Nat. Protoc. 3, 1101–1108 (2008).

    Article  CAS  Google Scholar 

  37. Chin-Smith, E.C., Slater, D.M., Johnson, M.R. & Tribe, R.M. STIM and Orai isoform expression in pregnant human myometrium: a potential role in calcium signaling during pregnancy. Front. Physiol. 5, 169 (2014).

    Article  Google Scholar 

  38. Goshen, I. et al. Dynamics of retrieval strategies for remote memories. Cell 147, 678–689 (2011).

    Article  CAS  Google Scholar 

  39. Tsutajima, J., Kunitake, T., Wakazono, Y. & Takamiya, K. Selective injection system into hippocampus CA1 via monitored theta oscillation. PLoS ONE 8, e83129 (2013).

    Article  Google Scholar 

  40. Kim, N. et al. Spatiotemporal control of fibroblast growth factor receptor signals by blue light. Chem. Biol. 21, 903–912 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C.L. Tucker (University of Colorado) for cDNA encoding CRY2PHR-mCherry, T. Inoue (Johns Hopkins University) for cDNA encoding Tom20-FRB, P. Gardner (Stanford University) for cDNA encoding NFATc1-GFP, D. Lee for fruitful discussions and N. Kim for advice on data analysis. This work was supported by the Institute for Basic Science (IBS-R001-G1), the NRF Stem Cell Program (2011-0019509) funded by MSIP, KAIST Institute for the BioCentury, and the National Leading Research Laboratory Program by the Ministry of Science, ICT and Future Planning (2011-0028772 to Daesoo K.), Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

W.D.H., T.K. and S.L. conceived the idea and directed the work. T.K., S.L., J.E.K., T.C., Y.-M.J., J.B., A.S., C.-H.K., H.-S.S., Y.-M.H., Daesoo K. and W.D.H. designed experiments; T.K., S.L., J.E.K., T.C., H.P., Y.-M.J., Dongkyu K., S.K., J.B., A.S., J.K., N.Y.K., D.W. and S.C. performed experiments, and T.K., S.L., Daesoo K. and W.D.H. wrote the manuscript.

Corresponding authors

Correspondence to Yong-Mahn Han, Daesoo Kim or Won Do Heo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–20 (PDF 6312 kb)

Dynamic movement of OptoSTIM1 along microtubules upon blue-light illumination.

Fluorescent images of HeLa cells expressing OptoSTIM1 were captured at 3.3-s intervals through EGFP channel. Numbers indicate minutes:seconds. (AVI 1088 kb)

Induction of Ca2+ influx by OptoSTIM1 activation.

Fluorescent images of HeLa cells co-expressing R-GECO1 and OptoSTIM1 were captured at 20-s intervals through mCherry and EGFP channels. The movie only represents R-GECO1 signals. Numbers indicate minutes:seconds. (AVI 14467 kb)

Transient or sustained control of Ca2+ influx by pulsatile illumination.

Fluorescent images of HeLa cells co-expressing R-GECO1 and OptoSTIM1 were stimulated by blue light at 10-min (three times) and subsequently at 3-min (ten times) intervals for inducing transient or sustained Ca2+ influx, respectively. The video only represents R-GECO1 signals. Numbers indicate minutes:seconds. (AVI 4386 kb)

Reversible NFATc1 translocation by transient activation of OptoSTIM1.

Fluorescent images of HeLa cells co-expressing NFATc1-mCherry and OptoSTIM1 were captured at 1-min intervals through mCherry channel. Cells were illuminated by blue light for 3 s. The video only represents NFATc1 signals. Numbers indicate minutes:seconds. (AVI 3939 kb)

Reversible disassembly of cortical F-actin by transient activation of OptoSTIM1.

Fluorescent images of HeLa cells co-expressing iRFP670-Lifeact and OptoSTIM1 were captured at 1-min intervals through Alexa-647 and EGFP channels. The video only represents Lifeact signals. Numbers indicate minutes:seconds. (AVI 9204 kb)

Spatiotemporal control of Ca2+ influx in multiple cells upon blue-light illumination.

Fluorescent images of three HeLa cells co-expressing R-GECO1 and OptoSTIM1 were captured at 20-s intervals through mCherry channel. Three cells were sequentially illuminated by blue light (1.5 s) at different time points indicated by arrows. The video only represents R-GECO1 signals. Numbers indicate minutes:seconds. (AVI 3067 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyung, T., Lee, S., Kim, J. et al. Optogenetic control of endogenous Ca2+ channels in vivo. Nat Biotechnol 33, 1092–1096 (2015). https://doi.org/10.1038/nbt.3350

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3350

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing