Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A kilonova as the electromagnetic counterpart to a gravitational-wave source

Abstract

Gravitational waves were discovered with the detection of binary black-hole mergers1 and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova2,3,4,5. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate6. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst7,8. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of −1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90–140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observational data summary.
Figure 2: Light curves of AT 2017gfo.
Figure 3: Model bolometric light curve fits using the Arnett formalism.
Figure 4: Spectroscopic data and model fits.

References

  1. Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  2. Metzger, B. D. et al. Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Mon. Not. R. Astron. Soc. 406, 2650–2662 (2010)

    Article  ADS  Google Scholar 

  3. Kasen, D., Badnell, N. R. & Barnes, J. Opacities and spectra of the r-process ejecta from neutron star mergers. Astrophys. J. 774, 25 (2013)

    Article  ADS  CAS  Google Scholar 

  4. Tanaka, M. & Hotokezaka, K. Radiative transfer simulations of neutron star merger ejecta. Astrophys. J. 775, 113 (2013)

    Article  ADS  CAS  Google Scholar 

  5. Rosswog, S. et al. Detectability of compact binary merger macronovae. Class. Quantum Gravity 34, 104001 (2017)

    Article  ADS  CAS  Google Scholar 

  6. Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Goldstein, A. et al. An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A. Astrophys. J. 848, https://doi.org/10.3847/2041-8213/aa8f41 (2017)

    Article  ADS  CAS  Google Scholar 

  8. Savchenko, V. et al. INTEGRAL detection of the first prompt gamma-ray signal coincident with the gravitational event GW170817. Astrophys. J. 848, https://doi.org/10.3847/2041-8213/aa8f94 (2017)

    Article  ADS  CAS  Google Scholar 

  9. Aasi, J. et al. Characterization of the LIGO detectors during their sixth science run. Class. Quantum Gravity 32, 115012 (2015)

    Article  ADS  Google Scholar 

  10. Acernese, F. et al. Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quantum Gravity 32, 024001 (2015)

    Article  ADS  Google Scholar 

  11. Veitch, J. et al. Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library. Phys. Rev. D 91, 042003 (2015)

    Article  ADS  CAS  Google Scholar 

  12. The LIGO Scientific Collaboration and the Virgo Collaboration. LIGO/Virgo G298048: updated sky map from gravitational-wave data. GRB Coord. Netw. 21527 (2017)

  13. Coulter, D. A. et al. Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science http://doi.org/10.1126/science.aap9811 (2017)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Valenti, S. et al. The discovery of the electromagnetic counterpart of GW170817: kilonova AT 2017gfo/DLT17ck. Astrophys. J. 848, http://doi.org/10.3847/2041-8213/aa8edf (2017)

    Article  ADS  CAS  Google Scholar 

  15. Smartt, S. J. et al. PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects. Astron. Astrophys. 579, A40 (2015)

    Article  Google Scholar 

  16. Stalder, B. et al. Observations of the GRB afterglow ATLAS17aeu and its possible association with GW170104. Preprint at https://arxiv.org/abs/1706.00175 (2017)

  17. Li, W. et al. Nearby supernova rates from the Lick Observatory Supernova Search – III. The rate–size relation, and the rates as a function of galaxy Hubble type and colour. Mon. Not. R. Astron. Soc. 412, 1473–1507 (2011)

    Article  ADS  Google Scholar 

  18. Barnes, J., Kasen, D., Wu, M.-R. & Martnez-Pinedo, G. Radioactivity and thermalization in the ejecta of compact object mergers and their impact on kilonova light curves. Astrophys. J. 829, 110 (2016)

    Article  ADS  Google Scholar 

  19. Metzger, B. D . Kilonovae. Living Rev. Relativ. 20, 3 (2017)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Barnes, J. & Kasen, D. Effect of a high opacity on the light curves of radioactively powered transients from compact object mergers. Astrophys. J. 775, 18 (2013)

    Article  ADS  CAS  Google Scholar 

  21. Arnett, W. D. Type I supernovae. I. Analytic solutions for the early part of the light curve. Astrophys. J. 253, 785–797 (1982)

    Article  ADS  CAS  Google Scholar 

  22. Inserra, C. et al. Super-luminous type Ic supernovae: catching a magnetar by the tail. Astrophys. J. 770, 128 (2013)

    Article  ADS  CAS  Google Scholar 

  23. Chatzopoulos, E., Wheeler, J. C. & Vinko, J. Generalized semi-analytical models of supernova light curves. Astrophys. J. 746, 121 (2012)

    Article  ADS  CAS  Google Scholar 

  24. Korobkin, O., Rosswog, S., Arcones, A. & Winteler, C. On the astrophysical robustness of the neutron star merger r-process. Mon. Not. R. Astron. Soc. 426, 1940–1949 (2012)

    Article  ADS  CAS  Google Scholar 

  25. Wanajo, S. et al. Production of all the r-process nuclides in the dynamical ejecta of neutron star mergers. Astrophys. J. 789, L39 (2014)

    Article  ADS  CAS  Google Scholar 

  26. Tanvir, N. R. et al. A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B. Nature 500, 547–549 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Kerzendorf, W. E. & Sim, S. A. A spectral synthesis code for rapid modelling of supernovae. Mon. Not. R. Astron. Soc. 440, 387–404 (2014)

    Article  ADS  CAS  Google Scholar 

  28. Kurucz, R. & Bell, B. Atomic Line Data Kurucz CD-ROM No. 23 (Smithsonian Astrophysical Observatory, 1995)

  29. Kramida, R. et al. NIST Atomic Spectra Database version 5.3 http://physics.nist.gov/asd, accessed 14 September 2017 (National Institute of Standards and Technology, 2015)

  30. Burris, D. L. et al. Neutron-capture elements in the early galaxy: insights from a large sample of metal-poor giants. Astrophys. J. 544, 302–319 (2000)

    Article  ADS  CAS  Google Scholar 

  31. Burbidge, E. M., Burbidge, G. R., Fowler, W. A. & Hoyle, F. Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–650 (1957)

    Article  ADS  Google Scholar 

  32. Kasen, D., Fernández, R. & Metzger, B. D. Kilonova light curves from the disc wind outflows of compact object mergers. Mon. Not. R. Astron. Soc. 450, 1777–1786 (2015)

    Article  ADS  CAS  Google Scholar 

  33. Wollaeger, R. T. et al. Impact of ejecta morphology and composition on the electromagnetic signatures of neutron star mergers. Preprint at https://arxiv.org/abs/1705.07084 (2017)

  34. Makarov, D. & Karachentsev, I. Galaxy groups and clouds in the local (z 0.01) Universe. Mon. Not. R. Astron. Soc. 412, 2498–2520 (2011)

    Article  ADS  Google Scholar 

  35. Wegner, G. et al. Redshift-distance survey of early-type galaxies: spectroscopic data. Astron. J. 126, 2268–2280 (2003)

    Article  ADS  CAS  Google Scholar 

  36. Freedman, W. L. et al. Final results from the Hubble Space Telescope key project to measure the hubble constant. Astrophys. J. 553, 47–72 (2001)

    Article  ADS  Google Scholar 

  37. Dolphin, A. DOLPHOT: stellar photometry. Astrophys. Source Code Lib. http://ascl.net/1608.013 (2016)

  38. Tonry, J. L. An early warning system for asteroid impact. Publ. Astron. Soc. Pacif. 123, 58–73 (2011)

    Article  ADS  Google Scholar 

  39. Schechter, P. L., Mateo, M. & Saha, A. DOPHOT, a CCD photometry program: description and tests. Publ. Astron. Soc. Pacif. 105, 1342–1353 (1993)

    Article  ADS  Google Scholar 

  40. Smartt, S. J. et al. Pan-STARRS and PESSTO search for an optical counterpart to the LIGO gravitational-wave source GW150914. Mon. Not. R. Astron. Soc. 462, 4094–4116 (2016)

    Article  ADS  CAS  Google Scholar 

  41. Doctor, Z. et al. A search for kilonovae in the dark energy survey. Astrophys. J. 837, 57 (2017)

    Article  ADS  Google Scholar 

  42. Abbott, B. P. et al. Upper limits on the rates of binary neutron star and neutron star-black hole mergers from Advanced LIGO’s first observing run. Astrophys. J. 832, L21 (2016)

    Article  ADS  Google Scholar 

  43. Chambers, K. C. et al. The Pan-STARRS1 surveys. Preprint at https://arxiv.org/abs/1612.05560 (2016)

  44. Abazajian, K. N. et al. The seventh data release of the Sloan Digital Sky Survey. Astrophys. J. Suppl. Ser. 182, 543–558 (2009)

    Article  ADS  Google Scholar 

  45. Tonry, J. L. et al. The Pan-STARRS1 photometric system. Astrophys. J. 750, 99 (2012)

    Article  ADS  Google Scholar 

  46. Magnier, E. A. et al. The Pan-STARRS data processing system. Preprint at https://arxiv.org/abs/1612.05240 (2016)

  47. Magnier, E. A. et al. Pan-STARRS pixel analysis: source detection and characterization. Preprint at https://arxiv.org/abs/1612.05244 (2016)

  48. Magnier, E. A. et al. Pan-STARRS photometric and astrometric calibration. Preprint at https://arxiv.org/abs/1612.05242 (2016)

  49. Waters, C. Z. et al. Pan-STARRS pixel processing: detrending, warping, stacking. Preprint at https://arxiv.org/abs/1612.05245 (2016)

  50. van Dokkum, P. G. Cosmic-Ray Rejection by Laplacian Edge Detection. Publ. Astron. Soc. Pac. 113, 1420–1427 (2001)

    Article  ADS  Google Scholar 

  51. Krühler, T. et al. GRB hosts through cosmic time. VLT/X-Shooter emission-line spectroscopy of 96 γ-ray-burst-selected galaxies at 0.1 < z < 3.6. Astron. Astrophys. 581, A125 (2015)

    Article  Google Scholar 

  52. Jerkstrand, A. et al. Long-duration superluminous supernovae at late times. Astrophys. J. 835, 13 (2017)

    Article  ADS  CAS  Google Scholar 

  53. Alard, C. & Lupton, R. H. A method for optimal image subtraction. Astrophys. J. 503, 325–331 (1998)

    Article  ADS  Google Scholar 

  54. Greiner, J. et al. GROND a 7-channel imager. Publ. Astron. Soc. Pacif. 120, 405 (2008)

    Article  ADS  Google Scholar 

  55. Wiseman, P., Chen, T.-W., Greiner, J. & Schady, P. LIGO/Virgo G298048: GROND photometry of the candidate optical counterpart reveals brightening in the NIR. GRB Coord. Netw. 21584 (2017)

  56. Krühler, T. et al. The 2175 Å dust feature in a gamma-ray burst afterglow at redshift 2.45. Astrophys. J. 685, 376–383 (2008)

    Article  ADS  Google Scholar 

  57. Li, W. et al. Nearby supernova rates from the Lick Observatory Supernova Search – II. The observed luminosity functions and fractions of supernovae in a complete sample. Mon. Not. R. Astron. Soc. 412, 1441–1472 (2011)

    Article  ADS  Google Scholar 

  58. Eldridge, J. J., Fraser, M., Smartt, S. J., Maund, J. R. & Crockett, R. M. The death of massive stars – II. Observational constraints on the progenitors of type Ibc supernovae. Mon. Not. R. Astron. Soc. 436, 774–795 (2013)

    Article  ADS  Google Scholar 

  59. Evans, P. et al. LIGO/VIRGO G298048: Swift UVOT detection and XRT upper limits. GRB Coord. Netw. 21550 (2017)

  60. Cenko, S. et al. LIGO/VIRGO G298048: continued Swift UV and X-ray monitoring of SSS17a. GRB Coord. Netw. 21572 (2017)

  61. Inserra, C. et al. Complexity in the light curves and spectra of slow-evolving superluminous supernovae. Mon. Not. R. Astron. Soc. 468, 4642–4662 (2017)

    Article  ADS  CAS  Google Scholar 

  62. Coughlin, M. et al. Towards rapid transient identification and characterization of kilonovae. Preprint at https://arxiv.org/abs/1708.07714 (2017)

  63. Feroz, F., Hobson, M. P. & Bridges, M. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398, 1601–1614 (2009)

    Article  ADS  Google Scholar 

  64. Buchner, J. et al. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue. Astron. Astrophys. 564, A125 (2014)

    Article  CAS  Google Scholar 

  65. Wu, M.-R., Fernández, R., Martínez-Pinedo, G. & Metzger, B. D. Production of the entire range of r-process nuclides by black hole accretion disc outflows from neutron star mergers. Mon. Not. R. Astron. Soc. 463, 2323–2334 (2016)

    Article  ADS  CAS  Google Scholar 

  66. Tanaka, M. et al. Properties of kilonovae from dynamical and post-merger ejecta of neutron star mergers. Preprint at https://arxiv.org/abs/1708.09101 (2017)

  67. Perets, H. B. et al. A faint type of supernova from a white dwarf with a helium-rich companion. Nature 465, 322–325 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Drout, M. R. et al. The fast and furious decay of the peculiar type Ic supernova 2005ek. Astrophys. J. 774, 58 (2013)

    Article  ADS  CAS  Google Scholar 

  69. Kasliwal, M. M. et al. Rapidly decaying supernova 2010X: a candidate “.Ia” explosion. Astrophys. J. 723, L98–L102 (2010)

    Article  ADS  Google Scholar 

  70. Valenti, S. et al. PESSTO monitoring of SN 2012hn: further heterogeneity among faint type I supernovae. Mon. Not. R. Astron. Soc. 437, 1519–1533 (2014)

    Article  ADS  CAS  Google Scholar 

  71. Inserra, C. et al. OGLE-2013-SN-079: a lonely supernova consistent with a helium shell detonation. Astrophys. J. 799, L2 (2015)

    Article  ADS  CAS  Google Scholar 

  72. Mazzali, P. A. et al. Hubble Space Telescope spectra of the type Ia supernova SN 2011fe: a tail of low-density, high-velocity material. Mon. Not. R. Astron. Soc. 439, 1959–1979 (2014)

    Article  ADS  CAS  Google Scholar 

  73. Hamuy, M. et al. The distance to SN 1999em from the expanding photosphere method. Astrophys. J. 558, 615–642 (2001)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, as part of ePESSTO (the extended Public ESO Spectroscopic Survey for Transient Objects Survey) ESO programme 199.D-0143 and 099.D-0376. We thank ESO staff for their support at La Silla and Paranal and for making the NACO and VISIR data public to LIGO–Virgo collaborating scientists. We thank J. Ward for permitting a time switch on the NTT. Part of the funding for GROND was generously granted from the Leibniz Prize to G. Hasinger (DFG grant HA 1850/28-1). Pan-STARRS1 and ATLAS are supported by NASA grants NNX08AR22G, NNX12AR65G, NNX14AM74G and NNX12AR55G issued through the SSO Near Earth Object Observations Program. We acknowledge help in obtaining GROND data from A. Hempel, M. Rabus and R. Lachaume on La Silla. The Pan-STARRS1 Surveys were made possible by the IfA, University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society, MPIA Heidelberg and MPE Garching, Johns Hopkins University, Durham University, the University of Edinburgh, Queen’s University Belfast, Harvard-Smithsonian Center for Astrophysics, Las Cumbres Observatory Global Telescope Network Incorporated, National Central University of Taiwan, Space Telescope Science Institute, the National Science Foundation under grant number AST-1238877, the University of Maryland, and Eotvos Lorand University (ELTE) and the Los Alamos National Laboratory. We acknowledge EU/FP7-ERC grants 291222 and 615929 and STFC funding through grants ST/P000312/1 and ERF ST/M005348/1. A.J. acknowledges Marie Sklodowska-Curie grant number 702538. M.G., A.H., K.A.R. and Ł.W. acknowledge the Polish NCN grant OPUS 2015/17/B/ST9/03167, J.S. is funded by the Knut and Alice Wallenberg Foundation. C.B., M.D.V., N.E.-R., A.P. and G.T. are supported by the PRIN-INAF 2014. M.C. is supported by the David and Ellen Lee Prize Postdoctoral Fellowship at the California Institute of Technology. M.F. is supported by a Royal Society Science Foundation Ireland University Research Fellowship. M.S. and C.I. acknowledge support from EU/FP7-ERC grant number 615929. P.G.J. acknowledges the ERC consolidator grant number 647208. GREAT is funded by V.R. J.D.L. acknowledges STFC grant ST/P000495/1. T.W.C., P.S. and P.W. acknowledge support through the Alexander von Humboldt Sofja Kovalevskaja Award. J.H. acknowledges financial support from the Vilho, Yrjö and Kalle Väisälä Foundation. J.V. acknowledges FONDECYT grant number 3160504. L.G. was supported in part by the US National Science Foundation under grant AST-1311862. MB acknowledges support from the Swedish Research Council and the Swedish Space Board. A.G.-Y. is supported by the EU via ERC grant number 725161, the Quantum Universe I-Core programme, the ISF, the BSF and by a Kimmel award. L.S. acknowledges IRC grant GOIPG/2017/1525. A.J.R. is supported by the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) through project number CE110001020. I.R.S. was supported by the Australian Research Council grant FT160100028. We acknowledge Millennium Science Initiative grant IC120009. This paper uses observations obtained at the Boyden Observatory, University of the Free State, South Africa.

Author information

Authors and Affiliations

Authors

Contributions

S.J.S. is Principal Investigator of ePESSTO and co-lead for the Pan-STARRS gravitational-wave follow-up. S.J.S. led the writing of the text and managed the project. A.J. wrote the light curve fitting code, led the modelling and co-wrote the text. M.C. provided code for modelling and Markov chain Monte Carlo analysis, provided analysis and text. K.W. provided input. S.A.S., L.J.S. and M.M. did the TARDIS modelling, assisted by A.G.-Y. in line identification. T.-W.C., J.G., S.K., A.R., P.S., T.S., T.K., P.W. and A.N.G. managed, executed, reduced and provided GROND data. E.K., M.F., C.I., K.M., T.K. and G.L. reduced and analysed photometry and spectra and contributed to analysis, text and figures. K.W.S. and D.R.Y. ran data management for ATLAS and Pan-STARRS analysis. J.T. is the ATLAS lead and provided data. K.C.C. is the Pan-STARRS director, the co-lead of the gravitational-wave follow-up and managed the observing sequences. Pan-STARRS and ATLAS data and products were provided by the team of M.E.H., J.B., L.D., H.F., T.B.L., E.A.M., A.R., A.S.B.S., B.S., R.J.W., C.W., H.W., M.W. and D.E.W. C.W.S. is the ATLAS co-lead for the gravitational-wave follow-up and contributed to the text. O.M.B. and P.C. checked the ATLAS data for candidates and O.M.B. provided manuscript editing support. The ePESSTO project was delivered by the following, who have contributed to data, analysis and text comments: R.K., J.D.L., D.S.H., C.A., J.P.A., C.R.A., C.A., C.B., F.E.B., M.B., M.B., Z.C., R.C., A.C., P.C., A.D.C., M.T.B., M.D.V., M.D., G.D., N.E.-R., R.E.F., A. Flörs, A. Franckowiak, C.F., L.B., S.G.-G., M.G., C.P.G., A.H., J.H., K.E.H., A.H., M.-S.H., S.T.H., I.M.H., L.I., P.A.J., P.G.J., Z.K.-R., M. Kowalski, M. Kromer, H.K., A.L., I.M., S.M., J.N., D.O’N., F.O., J.T.P., A.P., F.P., G.P., M.L.P., S.J.P., T.R., R.R., A.J.R., K.A.R., I.R.S., M.S., J.S., M.S., F.T., S.T., G.T., J.V., N.A.W., Ł.W., O.Y., G.C. and A.R. P.P. provided text and analysis comments. The 1.5B telescope data were provided, reduced and analysed by L.H., A.M.-C., L.S., H.S. and B.v.S. A.M. reduced and analysed the NACO and VISIR data.

Corresponding author

Correspondence to S. J. Smartt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks R. Chevalier, C. Miller and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Light curves of AT 2017gfo.

a, Observed (AB system) light curves of AT 2017gfo, vertically shifted for clarity. The 1σ uncertainties are typically smaller than the symbols. The arrows indicate 3σ upper limits. b, Comparison of the absolute r-band light curve of AT 2017gfo with those of a selection of faint and fast supernovae SN 2005E67, SN 2005ek68, SN 2010X69, SN 2012hn70 and OGLE-2013-SN-07971 (OGLE13-079). The comparison event phases are with respect to maximum light, while for AT 2017gfo they are with respect to the LIGO trigger.

Extended Data Figure 2 ATLAS limits at the position of AT 2017gfo.

5σ upper limits (from forced photometry) at the position of AT 2017gfo up to 601 d before discovery in the ATLAS images. The cyan and orange filter limits are plotted in those colours. These limits are measured on the difference images, which are the individual 30-s frames after having the ATLAS reference sky subtracted off. The points plotted represent (typically) 5 images per night, and are the median limits of those five 30-s frames. The two horizontal lines indicate the AB orange magnitude of AT 2017gfo at 0.7 and 2.4 days after discovery, illustrating that ATLAS has the sensitivity to make discoveries within 1–2 days of a neutron-star merger at this distance. The last non-detection is 16 days before discovery of AT 2017gfo.

Extended Data Figure 3 Spectral comparisons.

a, Comparison of our Xshooter spectra of AT 2017gfo with early-time (4–5 days after the explosion) optical and near infrared spectra of type Ia supernova SN 2011fe72 and type II-P supernova SN 1999em73. The spectra have been scaled for comparison purposes. b, Comparison of our earliest spectrum of AT 2017gfo (1.4 days after explosion) with a sample of type I supernova events, which share some common properties with AT 2017gfo such as faint absolute magnitudes and/or fast evolution and/or explosion environments without obvious star formation. c, Comparison of the +4.4 d spectrum of AT 2017gfo with our sample of faint and fast-evolving events at later phases.

Extended Data Figure 4 Posterior probability plots of our model light curve fits.

This is the Arnett formalism which includes a power-law term for radioactive powering. We show the 68% quantile in all plots and 95% and 99.7% levels in the two-dimensional histograms. We quote the maximum posterior fit value and the 68% quantile range as uncertainty.

Extended Data Figure 5 Posterior probability plots of our model light curve fits for the parameterized Metzger model19.

As in Extended Data Fig. 4, we show the 68% quantile in all plots and 95% and 99.7% levels in the two-dimensional histograms. We quote the maximum posterior fit value and the 68% quantile range as uncertainty.

Extended Data Table 1 Log of spectroscopic observations
Extended Data Table 2 Optical photometric measurements
Extended Data Table 3 Near-infrared photometric measurements
Extended Data Table 4 Bolometric light curve, temperature and radius evolution

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smartt, S., Chen, TW., Jerkstrand, A. et al. A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 551, 75–79 (2017). https://doi.org/10.1038/nature24303

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature24303

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing