Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two γ-ray bursts from dusty regions with little molecular gas

Abstract

Long-duration γ-ray bursts are associated with the explosions of massive stars1 and are accordingly expected to reside in star-forming regions with molecular gas (the fuel for star formation). Previous searches for carbon monoxide (CO), a tracer of molecular gas, in burst host galaxies did not detect any emission2,3,4. Molecules have been detected as absorption in the spectra of γ-ray burst afterglows, and the molecular gas is similar to the translucent or diffuse molecular clouds of the Milky Way5,6. Absorption lines probe the interstellar medium only along the line of sight, so it is not clear whether the molecular gas represents the general properties of the regions where the bursts occur. Here we report spatially resolved observations of CO line emission and millimetre-wavelength continuum emission in two galaxies hosting γ-ray bursts. The bursts happened in regions rich in dust, but not particularly rich in molecular gas. The ratio of molecular gas to dust (<9–14) is significantly lower than in star-forming regions of the Milky Way and nearby star-forming galaxies, suggesting that much of the dense gas where stars form has been dissipated by other massive stars.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CO maps, 1.2-mm continuum maps and optical images of the GRB hosts.
Figure 2: CO spectra of the GRB hosts.

Similar content being viewed by others

References

  1. Stanek, K. et al. Spectroscopic discovery of the supernova 2003dh associated with GRB 030329. Astrophys. J. 591, L17–L20 (2003)

    Article  ADS  CAS  Google Scholar 

  2. Kohno, K. et al. Nobeyama Millimeter Array observations of GRB 030329: a decay of afterglow with bumps and molecular gas in the host galaxy. Publ. Astron. Soc. Jpn 57, 147–153 (2005)

    Article  ADS  CAS  Google Scholar 

  3. Endo, A. et al. A revised estimate of the CO J = 1–0 emission from the host galaxy of GRB 030329 using the Nobeyama Millimeter Array. Astrophys. J. 659, 1431–1437 (2007)

    Article  ADS  CAS  Google Scholar 

  4. Hatsukade, B., Kohno, K., Endo, A., Nakanishi, K. & Ohta, K. CO observations of the host galaxy of GRB 000418 at z = 1.1. Astrophys. J. 738, 33–36 (2011)

    Article  ADS  Google Scholar 

  5. Prochaska, J. X. et al. The first positive detection of molecular gas in a GRB host galaxy. Astrophys. J. 691, L27–L32 (2009)

    Article  ADS  CAS  Google Scholar 

  6. Krühler, T. et al. Molecular hydrogen in the damped Lyman α system towards GRB 120815A at z = 2.36. Astron. Astrophys. 557, 18–38 (2013)

    Article  Google Scholar 

  7. Savaglio, S., Glazebrook, K. & Le Borgne, D. The galaxy population hosting gamma-ray bursts. Astrophys. J. 691, 182–211 (2009)

    Article  ADS  CAS  Google Scholar 

  8. Levesque, E. M., Kewley, L. J., Graham, J. F. & Fruchter, A. S. A high-metallicity host environment for the long-duration GRB 020819B. Astrophys. J. 712, L26–L30 (2010)

    Article  ADS  CAS  Google Scholar 

  9. Hunt, L. K. et al. New light on gamma-ray burst host galaxies with Herschel. Astron. Astrophys. 565, 112–130 (2014)

    Article  Google Scholar 

  10. Castro-Tirado, A. J. et al. The dark nature of GRB 051022 and its host galaxy. Astron. Astrophys. 475, 101–107 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Perley, D. A. & Perley, R. A. Radio constraints on heavily-obscured star-formation within dark gamma-ray burst host galaxies. Astrophys. J. 778, 172–189 (2013)

    Article  ADS  Google Scholar 

  12. Graham, J. F. et al. Unusually high metallicity host of the dark LGRB 051022. AIP Conf. Ser. 1133, 269–271 (2009)

    Article  ADS  CAS  Google Scholar 

  13. Jakobsson, P. et al. The radio afterglow and host galaxy of the dark GRB 020819B. Astrophys. J. 629, 45–51 (2005)

    Article  ADS  CAS  Google Scholar 

  14. Rol, E. et al. GRB 051022: physical parameters and extinction of a prototype dark burst. Astrophys. J. 669, 1098–1106 (2007)

    Article  ADS  CAS  Google Scholar 

  15. Jakobsson, P. et al. Swift identification of dark gamma-ray bursts. Astrophys. J. 617, L21–L24 (2004)

    Article  ADS  CAS  Google Scholar 

  16. Perley, D. A. et al. The host galaxies of Swift dark gamma-ray bursts: observational constraints on highly obscured and very high redshift GRBs. Astron. J. 138, 1690–1708 (2009)

    Article  ADS  CAS  Google Scholar 

  17. Cenko, S. B. et al. Dark bursts in the Swift era: the Palomar 60 Inch-Swift Early Optical Afterglow Catalog. Astrophys. J. 693, 1484–1493 (2009)

    Article  ADS  Google Scholar 

  18. Greiner, J. et al. The nature of ‘dark’ gamma-ray bursts. Astron. Astrophys. 526, 30–39 (2011)

    Article  Google Scholar 

  19. Campana, S. et al. The X-ray absorbing column density of a complete sample of bright Swift gamma-ray bursts. Mon. Not. R. Astron. Soc. 421, 1697–1702 (2012)

    Article  ADS  Google Scholar 

  20. Leroy, A. K. et al. Heracles: the HERA CO line extragalactic survey. Astron. J. 137, 4670–4696 (2009)

    Article  ADS  CAS  Google Scholar 

  21. Tacconi, L. J. et al. Phibss: Molecular gas content and scaling relations in z 1–3 massive, main-sequence star-forming galaxies. Astrophys. J. 768, 74–95 (2013)

    Article  ADS  Google Scholar 

  22. Bothwell, M. S. et al. A survey of molecular gas in luminous sub-millimetre galaxies. Mon. Not. R. Astron. Soc. 429, 3047–3067 (2013)

    Article  ADS  CAS  Google Scholar 

  23. Solomon, P. M. & Vanden Bout, P. A. Molecular gas at high redshift. Annu. Rev. Astron. Astrophys. 43, 677–725 (2005)

    Article  ADS  CAS  Google Scholar 

  24. Küpcü Yoldaş, A., Greiner, J., Klose, S., Krühler, T. & Savaglio, S. Highly extinguished host galaxy of the dark GRB 020819B. Astron. Astrophys. 515, L2–L5 (2010)

    Article  ADS  Google Scholar 

  25. Draine, B. T. et al. Dust masses, PAH abundances, and starlight intensities in the SINGS galaxy sample. Astrophys. J. 663, 866–894 (2007)

    Article  ADS  CAS  Google Scholar 

  26. Tumlinson, J., Prochaska, J. X., Chen, H.-W., Dessauges-Zavadsky, M. & Bloom, J. S. Missing molecular hydrogen and the physical conditions of GRB host galaxies. Astrophys. J. 668, 667–673 (2007)

    Article  ADS  CAS  Google Scholar 

  27. Whalen, D., Prochaska, J. X., Heger, A. & Tumlinson, J. The molecular hydrogen deficit in gamma-ray burst afterglows. Astrophys. J. 682, 1114–1123 (2008)

    Article  ADS  CAS  Google Scholar 

  28. Chen, H.-W. et al. High-redshift starbursting dwarf galaxies revealed by γ-ray burst afterglows. Astrophys. J. 691, 152–174 (2009)

    Article  ADS  CAS  Google Scholar 

  29. Seaquist, E., Yao, L., Dunne, L. & Cameron, H. Revised masses of dust and gas of SCUBA Local Universe Survey far-infrared bright galaxies based on a recent CO survey. Mon. Not. R. Astron. Soc. 349, 1428–1434 (2004)

    Article  ADS  CAS  Google Scholar 

  30. Kovács, A. et al. SHARC-2 350 μm observations of distant submillimeter-selected galaxies. Astrophys. J. 650, 592–603 (2006)

    Article  ADS  Google Scholar 

  31. McMullin, J. P. et al. CASA Architecture and Applications. Astronomical Data Analysis Software and Systems XVI (eds Shaw, R. A., Hill, F. & Bell, D. J. ) ASP Conf. Ser. 376 127–130 (ASP, 2007)

  32. Carilli, C. L. & Walter, F. Cool gas in high-redshift galaxies. Annu. Rev. Astron. Astrophys. 51, 105–161 (2013)

    Article  ADS  CAS  Google Scholar 

  33. Wilson, C. D. The metallicity dependence of the CO-to-H2 conversion factor from observations of local group galaxies. Astrophys. J. 448, L97–L100 (1995)

    Article  ADS  CAS  Google Scholar 

  34. Genzel, R. et al. The metallicity dependence of the CO → H2 conversion factor in z ≥ 1 star-forming galaxies. Astrophys. J. 746, 69–79 (2012)

    Article  ADS  Google Scholar 

  35. Bolatto, A. D., Wolfire, M. & Leroy, A. K. The CO-to-H2 conversion factor. Annu. Rev. Astron. Astrophys. 51, 207–268 (2013)

    Article  ADS  CAS  Google Scholar 

  36. Pilbratt, G. L. et al. Herschel Space Observatory. An ESA facility for far-infrared and submillimetre astronomy. Astron. Astrophys. 518, L1 (2010)

    Article  ADS  Google Scholar 

  37. Poglitsch, A. et al. The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory. Astron. Astrophys. 518, L2 (2010)

    Article  ADS  Google Scholar 

  38. Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. 117 (Suppl.). 393–404 (1996)

    ADS  Google Scholar 

  39. Elbaz, D. et al. GOODS-Herschel: an infrared main sequence for star-forming galaxies. Astron. Astrophys. 533, 119–144 (2011)

    Article  Google Scholar 

  40. Symeonidis, M. et al. The Herschel census of infrared SEDs through cosmic time. Mon. Not. R. Astron. Soc. 431, 2317–2340 (2013)

    Article  ADS  Google Scholar 

  41. De Breuck, C. et al. CO emission and associated HI absorption from a massive gas reservoir surrounding the z = 3 radio galaxy B3 J2330+3927. Astron. Astrophys. 401, 911–925 (2003)

    Article  ADS  CAS  Google Scholar 

  42. Dunne, L. et al. A census of metals at high and low redshift and the connection between submillimetre sources and spheroid formation. Mon. Not. R. Astron. Soc. 341, 589–598 (2003)

    Article  ADS  Google Scholar 

  43. Kennicutt, R. C., Jr The global Schmidt law in star-forming galaxies. Astrophys. J. 498, 541–552 (1998)

    Article  ADS  CAS  Google Scholar 

  44. Svensson, K. M., Levan, A. J., Tanvir, N. R., Fruchter, A. S. & Strolger, L.-G. The host galaxies of core-collapse supernovae and gamma-ray bursts. Mon. Not. R. Astron. Soc. 405, 57–76 (2010)

    ADS  Google Scholar 

  45. Stanway, E. R., Davies, L. J. M. & Levan, A. J. Low radio-derived star formation rates in z&lt;0.5 gamma-ray burst host galaxies. Mon. Not. R. Astron. Soc. 409, L74–L78 (2010)

    Article  ADS  Google Scholar 

  46. Hatsukade, B. et al. Constraints on obscured star formation in host galaxies of gamma-ray bursts. Astrophys. J. 748, 108–111 (2012)

    Article  ADS  Google Scholar 

  47. Silva, L. et al. Modeling the effects of dust on galactic spectral energy distributions from the ultraviolet to the millimeter band. Astrophys. J. 509, 103–117 (1998)

    Article  ADS  CAS  Google Scholar 

  48. Gao, Y. & Solomon, P. M. The star formation rate and dense molecular gas in galaxies. Astrophys. J. 606, 271–290 (2004)

    Article  ADS  CAS  Google Scholar 

  49. Combes, F. et al. Galaxy evolution and star formation efficiency at 0.2 &lt; z&lt;0.6. Astron. Astrophys. 528, 124–134 (2011)

    Article  Google Scholar 

  50. Combes, F. et al. Gas fraction and star formation efficiency at z&lt;1.0. Astron. Astrophys. 550, 41–55 (2013)

    Article  Google Scholar 

  51. Daddi, E. et al. Very high gas fractions and extended gas reservoirs in z = 1.5 disk galaxies. Astrophys. J. 713, 686–707 (2010)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge A. Kawamura and ALMA staff members for support. We thank K. Yabe and A. Seko for discussions. B.H. was supported by a Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for JSPS Fellows. K.O. was supported by a JSPS Grant-in-Aid for Scientific Research (C) (grant number 24540230). A.E. was supported by the NWO (Veni grant number 639.041.023). Y.T. was supported by JSPS Grant-in-Aid for Scientific Research on Innovative Areas (grant number 25103503). ALMA is a partnership of ESO (representing its member states), the NSF (USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. This research is based in part on observations made with Herschel. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. This research makes use of data based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (USA), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), the Ministério da Ciência, Tecnologia e Inovação (Brazil) and the Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

Author information

Authors and Affiliations

Authors

Contributions

B.H. led the project, reduced the ALMA data and wrote the manuscript. K.O. conducted the photometry of the Gemini and Herschel data. All authors contributed to the ALMA proposal, discussed the results and implications, and commented on the manuscript.

Corresponding author

Correspondence to B. Hatsukade.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

This research is based on the following ALMA data: ADS/JAO.ALMA#2011.0.00232.S (available from the ALMA archive at http://almascience.nao.ac.jp/alma-data/archive).

Extended data figures and tables

Extended Data Figure 1 Spectral energy distribution of the GRB 020819B host and the GRB 051022 host.

The red squares show ALMA 1.2-mm data. Black squares represent photometry from the literature10,11,14,24,44,45,46 and the publicly archived data of Herschel. Dashed curves show the best-fit modified blackbody functions. The arrows represent 3σ upper limits. For comparison, we plot SED models of Arp220, M82, NGC6946 and M51 (ref. 47). The SED models are scaled to the flux density of ALMA data.

Extended Data Figure 2 Comparison of CO and far-infrared luminosities.

The GRB 020819B host and the GRB 051022 host are plotted with 1σ uncertainties (red and blue squares). To examine the properties of the GRB host galaxies as a whole and to compare with previous studies, we plot our data without separating the nuclear region and the explosion site for the GRB 020819B host galaxy. Various galaxy populations are also plotted: local spirals20,48 (circles), local luminous infrared galaxies (LIRGs) (plus symbols) and ultraluminous infrared galaxies (ULIRGs)23,48 (crosses), z ≈ 0.2–1 ULIRGs49,50 (diamonds), z ≈ 1–2 normal star-forming galaxies21 (pentagons), submillimetre-luminous galaxies22,23 (up-triangles), QSOs and radio galaxies23 (down-triangles). The grey solid and dashed lines represent the sequence of normal star-forming galaxies and starburst galaxies, respectively51.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Supplementary References. (PDF 204 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatsukade, B., Ohta, K., Endo, A. et al. Two γ-ray bursts from dusty regions with little molecular gas. Nature 510, 247–249 (2014). https://doi.org/10.1038/nature13325

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13325

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing